
ISRAEL JOURNAL OF MATHEMATICS, Vol, 50, Nos. 1-2, 1985 

KUMMER SUBFIELDS OF 
MALCEV-NEUMANN DIVISION ALGEBRAS 

BY 

J.-P. TIGNOL "'~ AND S. A. AMITSUR h 
°Department o[ Mathematics, Universiti Catholique de Louvain, 

B-1348 Louvain-la-Neuve, Belgium ; and bInstitute of Mathematics, 
The Hebrew University of Jerusalem, Jerusalem 91904, Israel 

ABSTRACT 

The abelian Galois subfields of Matcev-Neumann formal series division rings 
are determined. The results obtained in this paper lead to a lower bound for the 
rank of Galois splitting fields of universal division algebras. 

Introduction 

Malcev-Neumann rings of formal series in non-commuting variables provide 

an interesting class of examples of division rings: for instance, the second author 

has shown in [3, §2], as part of his solution of the crossed product problem that 

some of these rings are crossed products only of groups which are direct products 

of cyclic groups of prime order. 

In the present paper, Neumann 's  definition of formal series division rings, 

which uses a cocycle f to twist the multiplication of indeterminates, is restricted 

in such a way that the resulting division rings ~t  are finite-dimensional over their 

center (see §2). Under  this mild restriction, we obtain in §3 a complete 

description of the subfields of @r which are Kummer  extensions of the center 

(i.e. abelian Galois over the center, which is assumed to contain sufficiently many 

roots of unity). The general results of §3 are specialized in §§4 and 5 to the case 

of iterated Laurent  power series. We thus generalize the results of [3, §2]. 

In §6, we obtain some information on simultaneous crossed products. Roughly 

speaking, the problem we deal with can be formulated as follows: suppose a 
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central simple algebra is a crossed product of some group G;  is it then 

necessarily similar to a crossed product of some other group H ?  (Precise 

definitions are given in 6.1.) As an application of the preceding results, we obtain 

some relations on the invariant factors of abelian groups G and H for which this 

property holds. Previously known results on simultaneous crossed products are 

quoted without proof in §8. 

A further application is given in §7, where a lower bound for the rank of 

Galois splitting fields of universal division algebras is obtained. 

1. Cohomology of trivial modules and skew-symmetric forms 

1.1. Let G and A be abelian groups. We shall use the additive notation for A 

and the multiplicative notation for G (though subsequently the results of this 

section will be applied in an opposite situation, where A = K* is the multiplica- 

tire group of a field and G is an additive abelian group). 

A skew-symmetric map from G x G to A is a map 

a : G x G - - > A  

which is Z-bilinear and such that a(o ,  o ~) = 0 for all or E G ;  therefore, a (o  ~, ~-)= 

- a(r ,  o-) for all ~r, ~" E G. The set of all such maps is an abelian group which will 

be denoted by Skew(G, A).  

1.2. Skew-symmetric maps can be constructed from 2-cocylces f E Z2(G, A),  

for the trivial action of G on A (i.e. o- (u)= u for all u E A),  as follows: recall 

that a map f : G x G --> A is a 2-cocycle if it satisfies the cocycle condition, which 

in the case of trivial action is of the form: 

Of(o, 'c,p)=f(~,p)-f(o-~,p)+f(o' ,rp)-f(o-,r)=O fora l l  ~r,~-,p E G ;  

for f E Z2(G, A),  we define a map a t : G x G --~ A by: 

at(o,  ~-) = f(o-, ~-)-f(~-, o-). 

but moreover,  since G is abelian, a straightforward Clearly, a t (or, o') = 0, 

computation yields: 

at(o, p) + o ) -  at(o's, o) = af( , 7, o ) -  af( , p, , )  + af(o, = o, 

which proves that a t is Z-bilinear; thus, at E Skew(G, A) .  

If fEB~-(G,A),  i.e. f ( o , r ) =  g(~ ' ) -g(~)+g(o ' )  for some map g:O-->A, 
then it is easily seen that a1=0 ,  whence the m a p f ~ a t  induces a 

homomorphism 
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: H2(G, A )--> Skew(G, A ). 

The kernel of • obviously contains H2(G,A)~ym, the group of cohomology 

classes which are represented by symmetric cocycles, i.e. cocycles f such that 

f (a ,  ~-) = f(r,  0-) for all tr, ~" E G. (Note that this definition of H2(G, A )sy~ makes 
sense (and will be used) even if the action of G on A is not trivial. In the case of 

trivial action, every coboundary is symmetric, whence H2(G,a)~ym = 
Z2(G,a)~ym/B2(G,a).) 

1.3. PROPOSmON. If G is abelian and acts trivially on A, then there is a split 
exact sequence : 

O--> H2( G, A )~ym--~ H2( G, A ) * > Skew(G,A)--->0. 

PROOF. It is easy to see that the kernel of • is H2(G, A )sym- To prove the 

rest, we construct a splitting map0  :Skew(G,A)-->H2(G,A),  as follows: 

Choose a basis trl . . . .  ,tr, of G, so that G = ( t r l ) O " ' O ( t r r ) ,  and denote 

~r" = o'~ . . . .  tr, ~' if /, = (/.~ . . . . .  /z,). For any a ~ Skew(G, A) ,  define 

O(a)(o -~, o -v) = ~ Ix, uja(o',, o)). 
i>j 

A straightforward computation shows that 0 (a)  is well-defined and that 0 ( a ) E  

Z2(G,A).  Moreover, since a is skew and bilinear, 

~ O ( a ) ( o  -~', o -v) = ~'~ ix, via (o',, o) )+ ~'~ i~,vja(o',, o)) = a (o  "~, o'~), 
i>j i<j 

whence ~ 0  = 1. 
An alternative (non-computational) proof is to use the universal coefficient 

theorem for cohomology (see e.g. [8, p. 77]), which provides a split exact 

sequence: 

O--> Ext[(HI(G,Z),A )---> H2(G,A ) * > Hom(H2(G,Z),A )--->O. 

Since G is abelian, we have Hi(G, Z) = G. Moreover, since the action of G on A 

is trivial, Ext,(G, A ) and H2(G, A )sy,~ are naturally isomorphic, since they both 

classify the abelian group extensions of A by G. Therefore, 

Extl(HI(G, Z), A ) - H2(G, A )~ym- 

On the other hand, by theorem 3 of [9, p. 595], there is a natural isomorphism: 

H2(G, Z)~- G ^ G, where G 6 G denotes the second exterior power of G (as a 

Z-module). 
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Clearly, Homz(G ^ G, A ) =  Skew(G, A),  whence we may identify: 

Hom(H2(G, Z), A ) = Skew(G, A ) 

and it is easy to check that under this identification, 4~ = ~ .  

1.4. Henceforth, we consider the case where G is a finite abelian group and 

A = Q/Z. In this case, we refer to the elements of Skew( G, Q/Z) as skew- 

symmetric forms. Each such form a induces a homomorphism d : G ~ G from 

G to its character group G, by letting fi(o-)(r) --= a(~r, z). 

The skew symmetric form a is called regular if d is injective (whence also 

surjective, since G and G have the same order), or in other words, if a (o-, r)  = 0 

for all ~" E G implies ~r = 0. 

If G is a finite abelian group and a is a regular skew-symmetric form on G, the 

pair ( G , a )  is called a symplectic (Z-)module. The structure of symplectic 

modules is easily determined (see e.g. [11, §19] or [21, §4]): 

THEOREM. I f  ( G, a)  is a symplectic module, then G = S 0 T, a direct sum of 

two isomorphic subgroups. Moreover, there is a basis (~r~ . . . . .  o-n) of S and a basis 

(Zl , . . . ,  r,)  of T such that for each i, o'i and ri have the same order ri. Furthermore, 

n+l divides ri for i = 1 , . . . ,  n - 1, and the form a satisfies : 
(1) a ( ~ r , o ' j ) = a ( r ,  r j )=O foral l  i , j = l  . . . .  ,n. 

(2) a (o- , , r j )=0 i f i ~ j .  
(3) a(o-~, r~) = r ;  1 (mod Z) for i = 1 , . . . ,  n. 

Conversely, if r l  . . . .  , r, is a sequence of integers and if 

G = (Z/r~Z) z × ' - "  × (Z/r,Z) z, 

then, letting crl, r~ . . . . .  o'~, zn denote the standard basis of G, relations (1), (2), (3) 

above define a regular skew-symmetric form on G. 

COgOLLAgY. I f  (G, a) is a symplectic module, then the invariant factors of G 

appear in pairs : (r~, r~, r2, r2, . . . ,  r,, r~). Hence, the rank of G is even, and its order 

is a square : [ G [ = ( r , . "  r,)2. 

1.5. Let (G, a)  be a symplectic module. For any subgroup H C G, we denote 

H ~ = {or E G I a(g,  z) = 0 for all ~- E H}. 

A subgroup H is called isotropic if H C  H ~, i.e. a ( H , H ) = O ,  and it is called 

Lagrangian if it is maximal isotropic, i.e. H = H ±. For instance, the subgroups S 

and T of Theorem 1.4 are Lagrangians of (G, a). 
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At a later stage in this paper, we shall translate a problem of splitting fields to 

a probIem about Lagrangians of certain symplectic modules. 

To determine the Lagrangians of a given (arbitrary) symplectic module seems 

to be rather difficult. However, this determination is easy in two cases: when G 

is elementary abelian (i.e. a direct sum of cyclic groups of prime order) and when 

G has rank 2 (i.e. G is a direct sum of two cyclic groups). 

LEMMA. For any subgroup H of a symplectic module (G,a) ,  we have: 
G / H I = H  (not canonically). I f  H is a Lagrangian, then I G I = I H I  2, and 
rkH_-<rk G =<2rkH. 

PROOF. Let A : G --~/gi = Horn(H, Q/Z) be the composite map of ti : G --~ t~ 

and of the restriction map p : t~-~/2/. Since d is an isomorphism and since p is 

surjective, A is surjective. Moreover, its kernel is H ±, since A(o-)=0 is 

equivalent to a(cr, H ) =  0. Hence, A induces an isomorphism: G / H  ~= I2I. If H 

is a Lagrangian, then H ±= H and this equality yields the rest of the lemma. 

1.6. PROPOSITION. Let ( G, a) be a symplectic module. I f  G is an elementary 

abelian group of rank 2r, then all Lagrangians of ( G, a) are elementary abelian of 
rank r, hence isomorphic to each other. 

PROOF. This follows immediately form the fact that subgroups of elementary 

abelian groups are elementary abelian and from the preceding lemma. 

1.7. Suppose now that G = S G T, where S = (~) and T = (~-) are isomorphic 

cyclic groups of order r, and that a symplectic structure on G is defined by: 

a(o-, ~-) = r -1 (mod Z). (Compare 1.4.) Then we can prove: 

PROPOSITION. The Lagrangians of (G, a) are isomorphic to direct sums of 

cyclic groups, (/~) @ (v) where I-~ is of order s, v of order t and r = st. Conversely, 
for every factorization r = st there is a Lagrangian of this type. 

PROOF. If r = st, one readily verifies that p~ = t~' and v = ~.s generate a 

Lagrangian of the required type. The rest follows from Lemma 1.5. 

2. Malcev-Neumann division rings 

2.1. Let G be a finite abelian group acting on a field K by automorphisms and 

let F = K ~ be the subfield of K fixed (elementwise) by G. Note that G is not 

required to be a group of automorphisms of K, so that generally [K : F] divides 

1G I, but [K : F] # I G I; in fact, if G acts trivially on K, then F = K. 

Let e : Z" --~ G be a surjective homomorphism of the free abelian group Z n 
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onto G (for some n). Then Z ° also acts on K through e, namely: for a E Z" and 

a E K, a(a)= e(a)(a). 
Let f E Z2(G, K*) be a normalized 2-cocycle, i.e. f ( i ,  or) = f(cr, 1) = 1 for all 

o-E G. The inflation map induced by e raises the cocycle f to a cocycle in 
Z2(Z ", K*) which for simplicity we shall also denote by f. In other words, by 

definition: 
f ( a ,  = for 

Given K, G, f and e as above, we construct the Malcev-Neumann ring of formal 

series ~(K,  G,f, e) as follows: its elements are the formal series 

s = ~, aoz, (a~ E K) 
a ~ Z  n 

whose support supp(s )=  {~ ~ Z" ]a~ # 0} is a well-ordered subset of Z" for the 

anti-lexicographic ordering, i.e. the ordering for which the positive elements are 

the n-tuples (a~ . . . . .  a , )  such that, for some i, a~ > 0 and c~j = 0 for j > i. 
Addition in @ (K, G, f, e) has the usual meaning, and multiplication is defined 

by the relations: 

(2.1.1) z~a=a(a)z~ for a E K  andclEZ", 

(2.1.2) z~z~ =f(a, fl)z~+t~ for a, fl EZ". 

The multiplication is associative since f E Z2(Z ", K*) and its unit is Zo since f is 

normalized. We shall identify z0 with 1 E K and azo E ~(K, G,f, e) with a E K. 

It is well-known that ~(K, G,f, e) is a division ring [10, Theorem 5.7]. 

2.2. REMARK. In [10, §5], B.H. Neumann considered a more general con- 
struction, using an arbitrary cocycle f E Z2(Z ", K*). In the present paper, we 
consider only cocycles which arise by inflation from Z2(G,K*), in order to 

obtain finite-dimensional central division algebras: see 2.5 below. 

Although the following observation is not used in the present paper, it is worth 

noting that Neumann's construction only depends on the cohomology class of 

the cocycle f in H~-(Z ", K*). Therefore, the ring ~(K, G,f, e) only depends, up to 

isomorphism, on the image of f E Z:(G, K*) in H2(G, K*)/H2(G, K*)sym, since 

we have the following result: 

PgOPOSmON. The following sequence is exact: 

I..__~ H2(G,K,)sym_._) H2(G,K,  ) ~"f) H2(Z,,K,). 

A proof is given in the appendix. 
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2.3. The division ring ~ ( K ,  G , f , e )  can also be considered as an iterated 

Laurent  series ring in the indeterminates z, = z~,, where fl, is the i-th element of 

the standard basis of Z". Indeed, if a = (al . . . . .  a°) = Zad3,, we get 

(2.3.1) z~ = k~z~'z? . . . .  z:-  

for some k~ @ K*,  and we have the following relations: 

(2.3.2) z,a = [3, (a)z ,  for a E K* and z,zj = uijzjz, 

where uq = f([3,, [3j)f([3j, [3,)-~. 

An iterated Laurent  power series ring K ( ( z l  . . . . .  z ,))  can be constructed by 

induction using these relations; namely, 

K ( ( z ,  . . . .  , zi)) = K ( ( z ~ , . . . ,  z~-,))((zi)), j = 1,2 . . . . .  n 

is a Laurent  power series ring in the indeterminate zj with coefficients in 

K ( ( z l  . . . . .  zj_l)), in which the commutation relations of zj with the coefficients 

are derived from (2.3.2). By a proper  identification, we actually have: 

PROPOSITION. ~ ( K ,  G, f ,  e)  = K((Zl  . . . .  , z , ) ) .  

PROOF. One readily observes that the support of an element of 

K ( ( z i  . . . . .  z ,))  is well-ordered, so that one can consider 

K ( ( z ~ , . . . ,  z , ) )  C ~ ( K ,  G, f ,  e). 

The inclusion in the other direction follows from the fact that if s = 

Ea~z~ E ~ ( K ,  G, f ,  e) ,  then s = Ea~k~z~ . . . .  z~. by (2.3.1) and since the support 

of s is well ordered: 

s = ~ (~a~,k~z7 . . . .  z : - ] ' ) z :  - 
c t n > m  n 

for some m~ ~ Z. A simple induction argument completes the proof. 

2.4. To simplify notations, we denote @ (K, G, f, e) = @r- We now determine 

the center % of @e and the rank [Dr: %]. 

With the aid of the cocycle f, we distinguish a subset F r C Z" : it is the set of all 

~ Z ~ with the following properties: 

(a) y ( a )  = a for all a ~ K, 

(b) there exists d r ~ K* such that for all 13 E Z ~ the following relation holds: 

(2.4.1) f([3, y ) f ( y ,  [3)-~ = d,[3(d,)  -~. 

REMARKS. (1) If an element d, as in (b) exists, then it is uniquely determined 

up to multiplication by a non-zero element in the fixed field F. Indeed, if for 
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every /3 E Z", dr/3 (dr)-' = d ~/3 (d 0' -', then d'~d~ ~ ~ F*, whence d v' = dr • c for 

some c E F*. 
(2) We have Fr _D Ker e, since if y E Ker e, then (a) clearly holds (by definition 

of the action of Z" on K), and we can choose dr = 1, since [(/3, Y) = [(Y,/3) = 1 

for all /3 C Z". 

The following proposition provides a description of the center c~ r of Of: 

PROPOSITION. % is the set of all elements of @f of the form: 

y~F t 

with arbitrary c~ E F = K °. 

PROOF. Let s = E~z-  a~z~. The relation sa = as for all a E K is equivalent 

to: a ( a )  = a for all a E supp(s) and the condition that szo = z~s is equivalent to 

the requirement that a~z~z~ = z~a~%, which amounts to: 

a,,f(a,/3) =/3 (a~)/(/3, a).  

Therefore, s E % and only if supp(s)C Fr and for a E supp(s), the correspond- 

ing coefficient a~ satisfies (2.4.1). By Remark (1) above, a~ is then of the form: 

a~ = c~. d~ for some c~ E F*; whence s E cg r if and only if 

for some cr ~ F .  

2.5. THEOREM. 

s = ~, c.y(d-~zr) 
-,.eFt 

F¢ is a subgroup of finite index in Z" and 

[Dr : %1=  (Z" : F r ) . [ K  : F]. 

PROOF. If T, Y' E Ff, then d~z~ and d~,z~, are in %, whence (d~z~)(d~,z~,)-' E 

%. since (d~z~)(d~,z~,) ' =  d~_~,z~_~, for some dr_~,E K*, it follows from the 

preceding proposition that Y -  T ' E  Ff, whence F r is a subgroup of Z". Since 

Ker e C F r by Remark (2) of (2.4) and since (Z" : Ker e ) = [ G [ is finite, the index 

of Fr in Z" is finite. The rest of the theorem is an easy consequence of the 

description of ~r in Proposition 2.4: indeed, if {k~} is an F-basis of K and if {at} is 

a set of representatives of the cosets of Ff in Z", then the set {k~z~j} is a %-basis of 

~r. 

2.6. Recall that the degree of a finite-dimensional central division algebra is 

defined as the square root of its dimension. The previous theorem yields the 

following result on the degree of Dr (denoted by deg ~r): 
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COROLLARY. degD t divides [ G I. 

PROOF. In (2.1), we already observed that [K : F] divides I G] .  Since on the 

other hand (Z" : Ft) divides (Z" : Ker e ) = [G I, Theorem 2.5 shows that [ ~  : ~t] 

divides I G i 2, whence deg Dr divides I G I. 

2.7. The most powerful tool for investigating the division ring @r is the mat~ 

defined by: 

v : ~ Z "  

v (s) = min(supp(s)), 

i.e. v(s) is the minimal a for which z~ has a non-zero coefficient. Clearly, v is a 

valuation on ~t  with value group Z" and residue field ~t = K;  its restriction to 

% is a valuation with value group F t and residue field ~t  = F, by Proposition 2.4. 

The division ring Dr is strongly maximal with respect to v, in the terminology of 

[17, p. 54], i.e. every pseudo-convergent sequence in ~t has a pseudo-limit in Dr. 
In [12, p. 103], this is shown for f = 1 and with trivial action of G on K (i.e. for ~r 

commutative), but the proof carries over readily to our case. Similarly, c¢ t is 

strongly maximal, whence maximally complete by [17, Theorem 8, p. 51], 

whence also Henselian, which means that the valuation v on c~ t has a unique 
prolongation to any algebraic extension of ~r [17, Theorem 10. p. 54]. If L is 

such an extension, we denote by U1(L) the multiplicative group of all 1-units in 
L, i.e. integral elements of L which are mapped onto 1 in the residue field L. 

From the fact that L is Henselian, the following useful result is easily derived: 

2.8. PROPOSITION. If n is any integer which is not divisible by the characteristic 
of L, then the group U1(L ) is uniquely divisible by n. 

PROOF. If u E UI(L), then equation X" - u = 0 has a unique solution x E L 

such that ~ = 1 in/~, by [17, Lemma 1, p. 60], since the characteristic of/~ (which 

in this case is equal to the characteristic of L)  does not divide n. 

3. The Kummer  subfields of D I 

3.1. Our aim in this section is to determine the subfields of @I which are 

Kummer extensions of ~r. We shall obtain a complete description in the case 

where F r = Ker e : this hypothesis holds, for instance, if G is the Galois group of 
K/F, i.e. if G acts faithfully on K. 

Recall that a finite abelian Galois extension L / C  is a Kummer extension if C 

contains a primitive m-th root of unity, where m is the exponent of the Galois 
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group GaI(L/C). Note that this requires that the characteristic of C does not 

divide the rank of L over C. We introduce the notations: 

KUM(L/C)= {x E L* Ix" E C} and kum(L/C)= KUM(L/C)/C*, 

i.e. kum(L/C) is the factor group of KUM(L/C) modulo C*. 

The group kum(L/C) is dual to Gal(L/C) by the bilinear pairing: 

(o', a) = o'(a)a -1, 

whence kum(L/C)~-Gal(L/C) (not canonically). For details on Kummer 

theory, see e.g. [7, §8.9]. 

3.2. In a division algebra D with center C, any subfield which is a Kummer 

extension of C will be referred to as a Kummer subfield of D. These subfields 

can be constructed in the following way: 

Assume C contains a primitive m-th root of unity for some m => 1 and let A 

be a finite abelian subgroup of exponent m of the factor group D*/C*. For each 

a E A, choose a representative x, E D* and consider the C-spaces 

C(A )= ~ Cx, 
a E A  

which is clearly independent of the' choice of representatives xa. One easily 

verifies: 

LEMMA. If the elements x, commute pairwise, then C(A ) is a Kummer subfield 
of D, and kum(C(A )/C) = A. 

3.3. In our original division algebra ~f, we consider the set ~/f of all 

monomials, that is: 

Mf ={az~ lot EZ",a EK*}.  

For any s = Za~z~ E ~i, we denote by tz(s) the leading monomial, i.e.: 

~ ( s )  = ao~,~Zoc,~. 

A very simple and useful information is the fact that /z:N~--->M r is a 

homomorphism; hence if s, t E N'} commute, then/z (s) and/z  (t) also commute. 

This enables us to show: 

3.4. PROPOSITION. Every Kummer subfield L of Nt is conjugate to a Kummer 
subfield L' which has the property that kum(L' /~ t )  is represented by monomials of 
Mr. 



124 J.-P. TIGNOL AND S. A. AMITSUR Isr. J. Math. 

PROOF. Let {a~} be a set of representatives in L of the elements of 

kum(L/C£t), and let L'=EQl~(ai ) .  By (3.2), it follows that L '  is a Kummer 

subfield of ~t and kum(L'/~t) has the monomials/~(a~) as a set of representa- 

tives in L'*. 
Let m be the exponent of GaI(L/~I)  and let a ?  = c~ ~ ~'~ ; then 

L = :~t({c~1"}) and L ' =  ~t({/z(c~)"}). 

As/z(c~)c, 1 is a 1-unit in :~t, we have ix(ci)c? ~ E ~ "  by Proposition 2.8, whence 

/ x ( c ~ ) - c ~ m o d : ~ " .  It then follows from [7, p. 497] that L and L '  are 

~t-isomorphic, whence also conjugate irt ~t, by the Skolem-Noether theorem. 

3.5. Given a Kummer subfield L in ~r, let /S be its residue field and let 

SL = ev(L) be the image of the value group v(L) in G. We also note that 

F C/7 C K since K = ~r and F = c~ r. 

LEMMA The field E is a Kummer extension of F and SL acts trivially on L. 

PROOF. First, we show that SL acts trivially on /7,. Let cr E & = ev(L) and 

a E/~;  then there exists two elements s,,x~ E L  such that ev(x~)=o" and 

t t ( s , ) = a .  Since multiplication in L is commutative and since ~ is a 

homomorphism, we have 

a . /z  (x~) = g ( s , ) ,  tz (x~) =/x  (x~). tt (s,) =/x  (x~). a. 

On the other hand, since/x(x~) = b. zo~) for some b E K* and since ev(x~) = ~r, 
relation (2.!.1) (defining multiplication in ~'~) shows that 

tz(x,)a = o'(a)~(x~). 

Therefore, t r ( a ) =  a, as required. 
Next, let Lr  be the inertia subfield of L/%, i.e. the maximal unramified 

extension of % contained in L. Since L / ~  t is Galois, the residue field/7, is Galois 

over F and Gal(//,/F) is canonically isomorphic to Gal(Lr/~t): see, e.g. [17, 

Theorem 1, p. 62]. Therefore, L / F  is an abelian Galois extension. Moreover, 

since % contains a primitive m-th root of unity, where m = exp(Gal(L/:~t)), its 

residue field F also contains a primitive m-th root of unity, whence ElF  is a 

Kummer extension. 

3.6. From now on, we assume Ft = Ker e. Under this restriction, we prove: 

PROPOSITION. Let L be a Kummer subfield of ~t and SL its corresponding 
subgroup of G. There is a short exact sequence: 
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SL : 1 --) kum(/~/F)--) kum(L/%) t o  SL --) 1 

and since kum(L/%) is an abelian group, we have SL E H2(SL, kum(L/F))sym. 

PROOF. Let Lr be the inertia subfield of L/% as before, and consider the 

short exact sequence: 

1 ~ Gal(L/Lr)---* G a l ( L / % ) ~  Gal(Lr/%)~ 1. 

By duality between Galois groups and Kummer groups, we get: 

(3.6.1) 1 ~ kum(Lr/%)---~ k u m ( L / % ) ~  kum(L/Lr)---> 1. 

In order to obtain the exact sequence sL from the sequence above, we note first 

that the canonical isomorphism Gal(Lr/%)~-Gal(L/F) for inertial extensions 

(see [17, Theorem 1, p. 62]) yields a canonical isomorphism: kum(Lr/%)~- 
kum(i /F) .  On the other edge of (3.6.1), we have to show: kum(L/Lr)~- SL. 

Since kum(L/Lr)C L*/L*, we may consider the map induced by v: 

(3.6.2) v : kum(L/Lr)~  v(L )/v(Lr). 

Since Lr/~r is unramified, we have v(Lr)=F r =Kere ,  whence we get a 

homomorphism: 

ev : kum(L/Lr)--~ SL. 

To complete the proof, we show that this map is an isomorphism or, equival- 

ently, that the map v in (3.6.2) is 1-1. 
Denote by U(L) the group of all units in L and by UI(L) the group of 1-units. 

We have exact sequences of natural maps: 

(3.6.3) 1 ~ U(L ) ~  L* ~ v(L ) ~  O, 

(3.6.4) 1---~ U,(L )--> U(L ) ~  [,*---> 1. 

Comparing the sequence (3.6.4) with a similar exact sequence with LT instead of 

L, and taking into account the fact that LT = L, we get an isomorphism: 

U(t ) /U( t r )  ~- U,(L)/U,(Lr) 

which shows, by Proposition 2.8, that the group U(L)/U(Lr) is uniquely 

divisible by the exponent of Gal(L]Lr), which we denote by e. 

Next, consider the following commutative diagram with exact rows: 
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1 ~ U(L)/U(LT)---~ L */L ~--~ v(L)/v(LT)---~ 0 

le le le 
1 --* U(L)/U(LT)---~ L */L }--* v(L)/v(LT)--* 0 

in which the vertical maps send each element onto its e-th power and the rows 

are obtained from (3.6.3). Since v(L)/v(LT) is killed by e; by [17, Theorem 5, p. 

66] and since U(L)] U(LT) is uniquely divisible by e, the snake lemma shows that 

the e-torsion part of L *IL* is isomorphic to v (L)lv (LT) under an isomorphism 

induced by v. This shows that (3.6.2) is an isomorphism, since the e-torsion part 

of L*/L~ is kum(L/LT). 
Now, the short exact sequence SL is an element of H2(SL, kUm(E/F)), as a 

group extension, with SL acting trivially on kum(L/F) ,  by Lemma 3.5. Since 

kum(L/C£t) is an abelian group, it follows easily that SL is represented by 

symmetric cocycles, whence & E H'-(SL, kum(/Z/F))sym. 

3.7. COROLLARY. For any Kummer subfield L of @~, 

[L: %] = JSL I.[£ :F]. 

3.8. Next we show that the field/7,, the group SL and the cocycle & which are 

associated to the Kummer subfield L are all invariant under conjugacy: 

PROPOSITION. If L and L' are two conjugate Kummer subfields of ~i, then 
L' = L, SL. = SL and every ~f-isomorphism ¢¢ : L ~ L' induces an isomorphism 
q~, : kum(L/c~r)--~ kum(L' /~r)  such that the following diagram is commutative: 

& : 1 ~ kum(/~,/F)---~ kum(L/C~¢)--~ SL ~ 1 

&, : 1 ~ kum(/~'/F)---~ kum(L'/C~f) --* So,--* 1 

which means that SL = So' in H~-(SL, kum(/~/F))sym. 

PROOF. Let q~:L--->L' be a ~f-isomorphism. By the Skolem-Noether 

theorem, there exists a E ~ such that ~ ( x ) =  axa-' for all x E L ,  whence 

v(q~(x )) = v(a ) + v(x ) -  v(a ), and 

(3.8.1) v(~(x)) = v ( x )  for x E L. 

This already proves v(L)= v(L'), whence SL = SL,. 

Moreover, relation (3.8.1) also shows that ~ induces an F-isomorphism 

:/7, ~/7, ' .  Since/_7, and/7,' are Galois over F and are both contained in K, we 

must have /~ =/7,'. 
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Finally, it is easy to see that the induced automorphism qS, of kum(/2/F) is the 

identity, since if x E KUM(/] /F) ,  then ~(x)  = ix for some root of unity i E F. 

The rest of the proposition follows easily from this observation. 

3.9. The results obtained so far are valid for the Kummer subfields of all the 

division rings Df = D(K, G,f, e) which are defined with the same K, G and e, 
since no reference to the cocycle f was made. In the rest of this section, we 
obtain necessary and sufficient conditions for the cocycle sL to belong to a 

Kummer subfield of Dr. To this end, we relate the cocycles f and sL with the aid 

of the following diagram: 

Z2(SL, KUM(fMF))sym ~" , H~-(SL, K*) 

e* 1 T ress6L 
S2(Sc, kum(/7/f))sym H2(G, K*) 

The horizontal map i ,  is induced by the inclusion i : K U M ( / ~ / F ) ~  K*, the left 

vertical map e ,  is induced by the map e : KUM(E/F)--~  kum(L/F) ,  which is the 

reduction modulo F* and the right vertical map is the restriction from G to SL. 

The class of the cocycle f defining Dr lies in the lower right hand corner, i.e. in 

H2(G, K*), while sL appears in the lower left hand corner in 

H2(S~, kum(/~/F))~ym. Their relation is given in the following main result: 

3.10. THEOREM. If L is a Kummer subfield of Dr, then there exists a cocycle 
h E Z2(SL, KUM(/~/F))sym such that: 

(1) i , ( h ) =  s ~ re sL(f), and 
(2) e , (h)  = sL. 

It is interesting that the converse also holds if F contains sufficiently many 
roots of unity (e.g. a primitive [G [-th root of unity: see 3.14 below). More 
precisely: 

3.11. THEOREM. Let f~ be a Kummer extension of F in K and let S C G be a 
subgroup of G acting trivially on i .  If  there exists a cocycle h E 
z~2(S, KgM(E/f))sym such that i , (h)  G = ress(f),  then there exists a Kummer 
subfield L in Df such that: 

(1) /~ is the residue field of L, 
(2) S = ev(L) ( =  So), 

(3) The cohomology class sc of (3.6) satisfies: & = e,  (h ), provided F contains 
sufficiently many roots of unity. 
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We shall prove both theorems along similar lines and we start with the first 

theorem: 

3.12. Pnoo~ oF THEOREM 3.10. In this case the field L is given, but since our 

objects are invariant under conjugation, by Proposition 3.8, we may assume in 

view of Proposition 3.4 that kum(L/Cgf) is represented by monomials. Hence, for 

every (r E SL we can choose a monomial y~ E L whose class )7~ E kum(L/C£t) 
satisfies: 

Let 

~ o ( ~ )  = o'. 

where a~ E K *  and p(~r)EZ" is such that sp(o-)= o-. 

Computing y~y. we obtain: 

y~y. = a~o-(a~)z,(,)z,(,) 

= a~o(a~)f(o, r)zp(~)+pc,) 

= a~o(a~)a -l~f(o., ~')y~ [z p(o~)Zp(~)+p(,)].-1 

To compute the last factor, we note that 

z,(o~), z~(~_~(~,).~(~) = / ( p  (,,~-), 0 (o )  - 0 ("¢)  + 0 (~-))z,(~),~.). 

Since p (c r ) -p (o r r )+  p ( r ) E K e r  e, and since f is normalized, it follows that 

Z ~ ) .  Zp(~)+v(~) = Zp(~)-oto~)+p(~ ). 

From the fact that p(o')-p(on')+p(~')EKere =Fr ,  it also follows that 

z~(~)-~(o~)+~(,) E ~} ,  by (2, 4). Denote: 

c(o-, ~') = z~(~)-~(o~)÷~(.)~ ~ ; 

hence we obtain: 

(3.12.1) 

where 

yCy. = h0r, ~')c(cr, ~')y¢,, 

h(o, ~) = a~o-(a.)a~fOr, z). 

Our final step is to show that the cocycle h satisfies the conditions of (3.10). 

First, since y~ and )1, commute (for they belong to L)  and since clearly 

c((r,¢)=c(z,o'), it follows from (3.12.1) that h(o , r )=h(z ,o ) ,  whence 
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h E Z2(S, K*),ym. Also, by definition of h, it is clear that h is cohomologous to 
the restriction of f from G to SL, which proves (1) of (3.10). To prove the rest, we 

consider relation (3.12.1) modulo c£~: 

~ = e(h(o-, r ) ) ~ ,  

where e : K*---~ K*/F* is the canonical map. Since {y~} is a set of representatives 

of SL in kum(L/%), this relation shows that e(h(o-, r)) ~ k u m ( i / F )  and that the 

cocyle e , (h)  represents the group extension & of (3.6). Therefore, h(~, r ) E  

K U M ( i / F )  and e , ( h ) =  &, which concludes the proof. 

3.13. PROOF OF THEOREM 3.11. We start with a field I2 C_ K, a group S acting 

trivially on/2 and a cocycle h E Z2(S, KUM(/2/F))sym such that i , ( h )=  ressG(f). 

This last condition implies that there exists {a~}~c C K* such that for all 

o-, ~- E S: 

h(o', "c) = a~o-(a~)a;~ f(o-, r). 

For each or @ S, we choose an element p(cr)EZ" such that e0(~r) = cr and we 

define: 

y~ = a~zo~.~E~f and c(a ,z )= zo~) oc~.)+o~E ~ .  

As before, a straightforward computation yields: 

y~y, = h(o-, r)c(cr, ~')yo~. 

Since h and c are symmetric and since S is abelian, it follows immediately that 

y~y, = y,y~ for all o-,~-ES. Let )7~ = y ~ E @ } / c ~ ;  since c(cr, r ) E ~ ,  we 

obtain: 

y~. y, = e(h(o-, ~'))37,,, 

: / ~ t  where e : K* ~ K*/F* is the canonical map. Hence, the subgroup A C @* * 

generated by kum(12/F) and the set {37,} is an extension of kum(/2/F) by S, with 
cocycle e , (h )  E Z~(S, kum(/7,/F)): The following sequence 

( E l  ~ 1 )kum F) > A - - ~ S  >1 

is exact. 

At this stage we introduce the hypothesis that F contains a primitive m-th 

root of unity, where m is the exponent of A;  then by Lemma 3.2 the algebra 

L = c~t(A ) is a Kummer subfield of ~I such that k u m ( L / % ) = A ,  whence 

[L :%1 = IAI = IS I.[£ :F]. 
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Since the residue field of L obviously contains /: and since ev(L)  clearly 

contains S, it follows from the last relations and from Corollary 3.7 tha t / :  is the 

residue field of L and that e v ( L ) =  S, which completes the proof. 

3.14. REMARK. In the proof of the preceding theorem, we have constructed a 

finite abelian subgroup A C D r/c~ r and we needed a primitive m-th root of 

unity, where m is the exponent of A. Since A turns out to be kum(L/~t) ,  the 

integer m is also the exponent of the Kummer subfield constructed. This 

exponent obviously divides the rank [L : c~t] which di+ides the degree of D r ; 

moreover, deg Dr divides ]G I, by Corollary 2.6. Hence, a primitive I G I-th root 

of unity in F is sufficient in all cases. 

4. The case of trivial action 

4.1. In this section, we consider the extreme case where the group G acts 

trivially on the field K. As in (1.2), we correspond to the cocycle f E Z2(G, K*) a 
skew-symmetric map at : G × G ---> K* by setting: 

at(o, .r) = f((r, "r)f(.c, o')-' for all o', r E G. 

PROPOSITION. Let m be the exponent of G. The cocycle f satisfies the condition 
that Ft = Kere  if and only if ar is regular, i.e. ar(o, G) = 1 implies o- = 1. This 
condition holds only if K contains a primitive m-th root of unity. 

PROOV. Since the action of G is trivial, F I is the set of all y E Z" such that 

f(/3, Y)f(Y,/3)-' -- 1 for all/3 ~ Z" ; 

in other words, F s = e-~(R), where R = {~r ~ G I at( °-, G) = 1}. Therefore, 

Ft = Ker e if and only if R = {1}, which proves the first part. 

If R = {1}, then the exponent of the group at(a, G)C K* is equal to the order 

of ~r, for all o" E G;  if G has exponent m, then it contains an element o- of order 

m, whence K* also contains an element of order m, which is a primitive m-th 

root of unity. This completes the proof. 

If F = Keret ,  then choosing a primitive m-th root of unity in K* we may 

identify at with a regular skew-symmetric form on G. Henceforth, we assume 

that Fr = Ker e and we denote simply by G the symplectic module (G, at). 

Recall that an isotropic subgroup H C G is a subgroup for which at(H, H)  = 
1. These subgroups completely determine the subfields of @i, as shown in the 

following theorem: 
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4.2. THEOREM. Every extension L of % in ~r is a Kummer subfield of @r and 
ev(L ) is an isotropic subgroup of G. The map L --~ ev(L ) defines a one-to-one 
correspondence between the set of classes of conjugate subfields of ~r which contain 
~r and the set of isotropic subgroups of G. This correspondence satisfies: 

(1) [L : %] = l ev(L)[ and ev : kum(L/%)---~ ev(L) is an isomorphism. 
(2) If L~ C_ L2, then ev(L~) C_ ev(L2) and if S~, $2 are isotropic subgroups such 

that S~ C_ $2, then there exists subfields L~, L2 such that L~ C_ L~ and ev(L~) = S~ for 
i =1 ,2 .  

PROOF. The valuation v on @r makes ~r a totally ramified extension of ~r 

since ~r = F --- K = ~r. Hence, every extension of % in ~r is totally ramified, 

whence a Kummer extension of %, since K contains a primitive m-th root of 

unity: see [17, Theorem 4, p. 66]. 

Let L be a (Kummer) subfield of ~r and let SL = ev(L)C_ G as in §3. Since 

i = F = K, we have KUM(/S/F) = K* and kum(/~,/F) = 1; it then follows from 

Theorem 3.10 that ressL(f) is symmetric, hence %(0-, z) -- 1 for tr, r E SL, which 

means that SL is isotropic in G. 

Conversely, let S be an isotropic subgroup of G;  then %(S, S ) =  1, which 

means that ress~(f)U Z2(S,K*)sym and we can apply Theorem 3.11 with h = 

ress°(f) and/7 = K to obtain a Kummer subfield L of ~I such that S = ev(L) as 

required. 

Before completing the proof that ev induces a one-to-one correspondence 

between classes of conjugate subfields and isotropic subgroups, we observe that 

(1) readily follows from Proposition 3.6 since kum(f , /F)  = 1 for every (Kummer) 

subfield L. 

Next, we prove (2): let $1 C_ $2 for some isotropic subgroups of G and let L1, 

L2 be two Kummer subfields such that e v ( L ) =  S~. By Proposition 3.4, we can 

find Kummer subfields L ~, L~ which are conjugate to L1 and L2 respectively, and 

such that kum(L'd~£r) is represented by monomials in Mr for i = 1,2. In other 

words, kum(L ~/%) and kum(L~/%) both lie in the factor group (MI- ~£ ~)/~ 7. 

Clearly, ~g~ C Ker ev since v(%~) = F r = Ker e ; moreover it is easily seen, 
using Proposition 2.4, that At r N Kerev C c£~, so that the homomorphism 

ev "(At r. ~ ) / ~ - - - ~  G is actually an isomorphism. Now, by (I) and by Proposi- 

tion 3.8, we have ev (kum(L'd%)) = ev(L'~) = S~ for i = 1,2; but since S1 _C $2, it 

follows that kum(L ~/F) C_ kum(L'~/F) and hence L~ _C L~' since KUM(L I/F) and 

KUM(L ~/F)generate L I and L2' respectively; also ev (L'~) = S~. This proves (2). 

Moreover, if S~ = $2 then obviously L~ = L~; since L'~ is conjugate to L~ for 

i =  1,2, this shows that if ev(LO= ev(L2), then L~ and LE are conjugate. To 
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complete the proof, it now suffices to note that ev is well-defined on classes of 

conjugate subfields of ~t by Proposition 3.8. 

4.3. COROLLARY. The isomorphism classes of Galois groups of maximal 
subfields of Dr are identical to the isomorphism classes of Lagrangians of the 
symplectic module G. 

PROOF. Recall that a Lagrangian of G is by definition a maximal isotropic 

subgroup; they thus correspond to maximal subfields of ~ .  Since the Galois 

group of a Kummer extension is isomorphic to its Kummer group, the corollary 

readily follows from the preceding theorem. 

4.4. If the field K is algebraically closed, then we can apply a recent result of 

the authors [19] to prove: 

THEOREM. If K is algebraically closed, then for every splitting field M of ~r, 
Galois over qgt, the Galois group Gal(M/C~t) contains (an isomorphic image o[) a 
Lagrangian o[ G. 

PROOF. By the main theorem of [19], the splitting field M contains (an 

isomorphic image of) a maximal subfield L of ~r;  hence Gal(L/%), which is 

isomorphic to a Lagrangian S of G, is a homomorphic image of Gal(M/~t). 
Since the residue field K of ~ is algebraically closed, M is totally ramified over 
c~ t. It the characteristic of K does not divide [M :c¢t], then it follows from [17, p. 

66] that Gal(M/qgt) is abelian; in this case, since S is a homomorphic image of 

Gal(M/CCt), it is also isomorphic to a subgroup of Gal(M/~t) and the theorem is 

proved. 
If the characteristic of K, which we denote by p, divides [M : %], then let P be 

a p-Sylow subgroup of Gal(M/C~t) and let N = M P be its fixed field. Since p does 

not divide [L : qgt], we have L C N; but N is Galois over % with abelian Galois 
group, by [17, p. 66], whence S is isomorphic to a subgroup of Gal(N/•).  On 

the other hand, since N is Galois over ~t, the corresponding subgroup P is 

normal in Gal(M/CCt) and it follows from [5, Theorem 15.2.2] that Gal(M/CCt) 
contains a subgroup isomorphic to Gal(N/~t). Therefore, Gal(M/Cgt) also 

contains a subgroup isomorphic to S and the proof is complete. 

5. Laurent power series 

5.1. The division algebras ~t with trivial action of G on K are closely related 

to some other known division algebras, which are constructed as follows: 

Let r l , . . . ,  r, be n positive integers and let m be the least common multiple of 
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rl . . . . .  rn. Let also K be a field containing a primitive m-th root of unity w ; then 

o9~ = ~o"'7' is a primitive r~-th root of unity for i = 1 . . . . .  n. 

Consider the iterated Laurent  series ring in 2n non-commuting indetermi- 

nates: 
D(K,  n , . . . ,  r,) = K((x~, y , , . . . ,  x,,  y,)) 

with the multiplication table: 

x~a = axe, y~a = ay~ 

xixj = xix~, y~y/ = yjy~, 

O ' l ,  T I ~  • • • , O ' n ,  ~ ' n .  

D ( K , n  . . . . .  r,) 

symmetric map 

Proposition 4.1. 

for a E K, 

5.3. The preceding proposition has also an "almost"  converse result: 

PROPOSITION. Let G be an abelian group acting trivially an a field K and let 

f ~ Z2(G, K*). I f  the corresponding skew-symmetric map at E Skew(G, K*)  is 

x~yj = yjx~ for i F  j, 

x i y i  = t o i y i x i .  

These division rings were first considered in [3, §2] (see also [6, Chapter II, §5]) 

in order to construct non-crossed-product division algebras, and they are of the 

type described in the previous sections: 

5.2 .  PROPOSITION. D(K,  r~ . . . .  , r.) ~- @(K, G,f, e) for some abelian group G 

acting trivially on K, some mape :Z 2" -~ G and some cocycle f E Z2(G, K*) for 

which F I = Ker e. 

PROOF. Let G = (Z/r~Z) 2 x . .  • × (Z/rnZ) 2 and let o-1,~-~ . . . .  , tr . ,  ~-. be the 

standard basis of G, so that o-~ and ~'~ have order r,. Let a : G x G ~ K* be the 

skew-symmetric map defined by: 

a (tr.  crj) = a (1-. ~-j) -- 1 for all i,j, 

a(~r~, z j )=  1 for i ~ j ,  

It follows from Proposition 1.3 that there exists a cocycle f ~ Z2(G, K*) such 

that f ( o ' , r ) f ( r , o ' )  l = a ( a , z )  for all o - , r C G .  Now let e : Z  2~-~G be the 

canonical homomorphism, which maps the standard basis f l~, . . . ,  f12~ of Z 2n onto 

From Proposition 2.3 we conclude that ~ ( K , G , f , e ) ~ -  

by mapping z~_~--~x~ and z2~---->y~. Moreover,  the skew- 

a = a t  is easily seen to be regular, whence F t = K e r e  by 
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regular, then there exist integers rl . . . . .  rn and a homomorphism e : Z 2~ ~ G such 

that ~ (K, G, f, e ) -~ D (K, r~,..., r~). 

PROOF. Let m be the exponent of G. Since ay is regular, it follows from 

Proposition 4.1 that K contains a primitive m-th root of unity oJ, which we use to 

identify a r to a regular skew-symmetric form on G. Theorem 1.4 then shows that 

G has a basis (o-1, ~-1 . . . .  , ~ ,  ~'~) such that 

ar(~r,,o-j)=ar(~-i,~-j)=l, a r ( ~ , , r j ) = l  f o r i ~ j  and ar(tr,,~-i)=o) m'7', 

where r~ denotes the order of o-i, which is equal to the order of ~-~. If e "Z 2" ~ G 

maps the standard basis of Z 2n onto o-~,~-1 . . . . .  o~, ~'~, it then follows from 

Proposition 2.3 that ~(K, G,f, e) ~- D(K, r~,..., r,). 

5.4. The results of the preceding section yield a different proof of [3, Theorem 

3] (see also [6, Theorem 1, p. 102]): 

THEOREM. Let p be a prime number and let K be a field containing a primitive 

p-th root of unity. Every maximal subfield of D(K, p . . . . .  p) (with n times p) is 
Galois over the center with elementary abelian Galois group of rank n. Moreover, if 
K is algebraically closed, then the Galois group of every Galois splitting field of 

D(K,p  . . . . .  p) contains such a group. 

PROOF. From Proposition 5.2, it follows that D(K,p , . . .  ,p)~- @(K, G,f, e) 
with an elementary abelian group G of rank 2n. By Theorem 4.2, every maximal 

subfield is Galois over the center and by Corollary 4.3, its Galois group is 

isomorphic to a Lagrangian of G, and is therefore elementary abelian of rank n, 

by Proposition 1.6. The rest follows from Theorem 4.4. 

5.5. Similarly, we have: 

THEOREM. Let r be an integer and let K be a field containing a primitive r-th 
root of unity. Every maximal subfield of D(K, r) is Galois over the center with a 

Galois group isomorphic to a direct product of two cyclic groups whose orders 
multiply to r. Moreover, if K is algebraically closed, then the Galois group of every 

Galois splitting field of D(K, r) contains such a group. 

The proof is similar, using Proposition 1.7 instead of 1.6. 

6. Simultaneous crossed products 

6.1. DEFINITIONS. A group G is said to split a central simple algebra A over 

a field F if A is split by some Galois extension K of F whose Galois group 

Gal(K/F) is isomorphic to some subgroup of G. 
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If k is a field and if G, H are two groups, we say that H is G-adequate over k 

and we denote G ~ k H if every simple k-algebra split by G is also split by H. In 

other words, this means that for every extension F D k, every central simple 

algebra over F which is similar to a crossed product of some subgroup of G is 

also similar to a crossed product of some subgroup of H. 

The aim of this section is to show how the results of the preceding sections can 

be applied to yield some information on adequacy of finite groups. We first note 

the following immediate consequences of the definitions: 

PROPOSITION. 

(a) If G ~ k H ,  then G ~ z H  for every field F D k. 
(b) If  G is isomorphic to a subgroup of H, then G ~ k H. 
(c) If  G ~ k G '  and G' ~ k G " ,  then G ~ k G " .  

6.2. Next, we investigate how adequacy of direct products relate to adequacy 

of the factors. The following lemma is probably well-known, but we include a 

proof for-the reader's convenience. 

LEMMA. Let G1 and G2 be finite groups and let J C GI x G2 be a subgroup of 
their direct product. If  IGtl and tG21 are relatively prime, then J =  
(J n Gt) x (J fl G2). 

PROOF. Let J1 be the image of J under the projection map 7rl : G~ x G2 

G1. Since the kernel of ~-, is G: ( = 1 x G~ in G, x G2), the map 7rl induces a 

canonical isomorphism: J/J n G2 = Jr. 

Since I J~ I and I J (3 Ge[ are relatively prime, it follows from theorem 15.2.2 of 

[5] that J contains a subgroup J'~ isomorphic to Ji. This subgroup clearly lies in 

the kernel of the projection map 7r, : G, x G~,---> G2, i.e, in Gt, since its order is 

relatively prime to I G_~[. Theorefore, Jl C J n Gt, whence 

l(J f'l Gt) x (J f-I Ge)l>-_ IJll.IJl') G~_l. 

As J/J N G2 = J~, we also have I Jr 1. I J n Ge I = I J I, and the preceding inequality 
yields: I(J n G~) x ( j  f-i G2)I => IJI- 

Since obviously J D (J f /G t )  x (J A G_,), it follows that J = 

(J n G,) x (J n G2). 

6.3. LEMMA. Let Gt and G,_ be two finite groups of relatively prime orders and 

let F be a field. If  A is a central simple F-algebra split by G1 x G2, then 

A ~-A~ @vAz for some algebras At,  A2 split by G I and G2 respectively. Moreover, 
every splitting group of A splits A~ and A2. 
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Conversely, if A1 and A: are central simple F-algebras split by Gt and G2 
respectively, then A~ Q~A2 is split by G~ × G2. 

PROOF. Let K be a splitting field of A, Galois over F with Galois group 
GaI(K/F) isomorphic to a subgroup of G1 x G2. By Lemma 6.2, 

GaI(K/F) = (Gal(K/F) N GI) x (Gal(K/F) N G2), 

whence K = K~(~K:  for some subfields K~, K2 of K such that Gal(Ki/F)= 
GaI(K/F) fq Gi (for i = 1,2). This implies in particular that [K~ : F] and [/(2 : F] 

are relatively prime. 
Since the index of A divides [ K : F ] -  [K~ :F ] [K: :F ] ,  it follows from [2, 

Theorem 5.18] that A - A ~  QFA2, where the index of A~ divides [K~ :F] for 

i =1,2.  

The indices of A1 and A2 are thus relatively prime, whence A1 and A2 are 
both split by every splitting field of A, by [2, Theorem 4.10]: this already shows 

that every splitting group of A splits A~ and A2. In particular, K splits A~ and 
A2, whence Kt splits At and /(2 splits A2, since the index of At (resp. A2) is 
relatively prime to [K : K1] = [Kz : F] (resp. to [K : K2] = [Kt : F]). Since 
Gal(Kf/F) and Gal(KdF) are isomorphic to subgroups of G~ and G2 respec- 
tively, this proves that A~ is split by G~, for i = 1,2. The converse is clear, since if 

K~, K2 are splitting fiels of A~ and A2 respectively and if the ranks of K~ and/(2 
are relatively prime over F, then K~ QrK2 is a splitting field of A~ Q~A2. 

6.4. THEOREM. Let G~, G2, H~, H2 be finite groups and let k be a field. If I G~ [ 
and [H~ [ are both relatively prime to I G21 and [H2[, then G1 x G2 ~ k H, X 1-12 if 
and only if GI ~ kH, and G2 ~ kH2. 

PROOF. Assume first G, x G2 ~ k H, x/ /2  and let A be a central simple 
algebra split by G~. Since G~ is isomorphic to a subgroup of G~ x G2, we have 
G~ ~ k H~ ×/-/2 by transitivity of ~ k, whence A is split by/-/1 ×/-/2. Since [//1 I 

and [H21 are relatively prime, the previous lemma shows that A ~ A~(~A2,  
where A, is an algebra split by Hi for i = 1,2. Moreover, it also shows that A1 

and A2 are both split by G1, since A is split by G~. 

Now, the index of A2 divides [G,[ and ]H:[, since G1 and //2 split A2, 
whence A2 ~ 1 (i.e. A2 is a matrix algebra) since [Gt [and I H2t are relatively 
prime. Therefore, A ~ A~, whence A is split by H~: this proves G~ O ~H, and 
we similarly have G2 ~ ~/-/2. 

Conversely, assume G~ ~ k H~ and Gz ::> k//2, and let A be an algebra split by 
G~ x G:. The previous lemma shows that A -~ A~ @vA~ where Ai is split by G, 
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for i = 1,2. By hypothesis, it follows that Ai is split by Hi and then, by Lemma 
6.3 again, that A = A~ @vAz is split by H, x H2. This completes the proof. 

6.5. COROLLARY. If G and H are finite nilpotent groups, then, denoting by 
G(p) (resp. H(p)) a Sylow p-subgroup of G (resp. H), we have G ~ kH if and 
only if G(p) ~ ~H(p) for all primes p. 

PROOF. This readily follows from the theorem, since finite nilpotent groups 

are direct products of their Sylow subgroups [5, Theorem 10.3.4]. 

6.6. When G is abelian, the results of the previous sections yield rather strong 

conditions on the groups which are G-adequate:  

THEOREM. Let G be an abelian group and let k be a field whose characteristic 
does not divide 1GI. If G ~ k H  for some group H, then H contains (an 
isomorphic image of) a Lagrangian of every symplectic module containing (an 
isomorphic image of) G as a Lagrangian. In particular, I G I divides I HI. 

PROOF. Let K be an algebraic closure of k and let (G', a) be a symplectic 

module containing G as a Lagrangian. By Lemma 1.5, it follows that :tG'I = 
I G 12, hence the characteristic of K does not divide ]G'  I. Choosing a primitive 

exp(G')-th root of unity in K, we may identify the form a to a regular 
skew-symmetric map a E Skew(G',  K*). By Proposition 1.3, there is a cocycle of 

f E H2(G ', K*) whose corresponding form a t is a. Consider then the algebra 

~ = ~(K,  G',f, e) (for some map e :Z "--~ G'): since G is a Lagrangian of 

(G' ,  at), it splits @t, by Corollary 4.3. Now G ~ k H  and ~t D k, hence H also 
splits @~. By Theorem 4.4, it follows that H contains an isomorphic image of a 

Lagrangian of G'. Therefore, I GI divides I l l  I, since the order of every 
Lagrangian of G'  is equal to t GI ,  by Lemma 1.5. This completes the proof. 

6.7. When H also is assumed to be abelian, then G ~ k H  if and only if 
G(p)~k  H(p) for all primes p, by Corollary 6.5. When dealing with adequacy of 

abelian groups, we may thus restrict to abelian p-groups. 

In order to obtain explicit relations on the invariant factors of abelian groups 

G, H such that G ~ k H ,  we quote the following result of [20]: 

Let G and H be abelian p-groups (for some prime p); choose an integer n 

such that 2n _-> rk G, rk H, and let (gl . . . . .  g2,) and (hi . . . . .  hz,) with gi -->" "" --> 

g2n --> 0 and h~ _-> • • • _-> h2, _-> 0 be the exponents of p in the invariant factors of G 

and H respectively. We refer to these sequences as the invariant exponents of G 
and H respectively. 
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PROPOSITION. G is a Lagrangian in a symplectic module M1 with invariant 
exponents (gl + g2,g3+ g. .... ,g2.-l + g...) (each twice repeated) and also in a 

symplectic module M2 with invariant exponents (gl, g2 . . . . .  g2.) (each twice). If H 
is isomorphic to some Lagrangian of M~ and to some Lagrangian of M2, then 

(6.7.1) g2i-1 + g2~ = h2~-l + h2i and g2~-~ >= h2i-1 >-~ hei ~ g2i for i = 1 . . . . .  n. 

6.8. This proposition has an immediate consequence for the adequacy of 

groups: 

COROLLARY. Let G be an abelian p-group and let H be a p-group such that 

I G ] = I H]. If  G ~ Hfor some field k of characteristic different from p, then H is 
abelian and the invariant exponents of G and H are related by (6.7.1). 

PROOF. From Theorem 6.6, it readily follows that H is isomorphic to a 

Lagrangian of every symplectic module containing G as a Lagrangian, since 

]G I= I H I ;  therefore, H is abelian and the rest follows from the previous 

proposition. 

6.9. COROLLARY. If  G and H are finite abelian groups such that G ~ ~ H and 
H =),k G for some field k whose characteristic does not divide t G I nor I HI,  then 

G~-H.  

PROOF. If follows from Theorem 6.6 that I G ] divides {H I since G ~ k H, and 

that I HI divides I G l since H ~ G. Therefore, I G ] = I H I  - By Corollary 6.5, we 
also have G ( p ) ~ k H ( p )  and H ( p ) ~ G ( p )  for all primes p, whence the 

invariant exponents of G(p) and H(p) are related by (6.7.1) and similar relations 
with g, and hi permuted. From these relations, it clearly follows that the 

invariant exponents of G(p) and H(p) are equal, whence G(p)~-H(p)  for all 

primes p. Therefore, G -  H. 
In other words, this corollary shows that if G and H are non-isomorphic finite 

abelian groups and if k is a field whose characteristic is relatively prime to I G I 

and [H[ ,  then either there is a simple k-algebra which is a crossed product of a 

subgroup of G but not of a subgroup of H, or there is a simple k-algebra which is 

a crossed product of a subgroup of H but not of a subgroup of G. 

7. Splitting groups of universal division algebras 

7.1. The results of the preceding section yield some information on the 

minimal Galois extensions which split the universal division algebra UD(k, n), 

thanks to the following theorem, due to the second author [4, p. 15]: 
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THEOREM. Let k be an infinite field. I f  the universal division algebra UD(k, n) 
is split by a group H, then H splits every central simple algebra of degree n over any 

field F D k. Therefore, G ~ k H for every group G of order dividing n. 

The second assertion follows from the first, since every central simple algebra 

split by a group of order dividing n is similar to a central simple algebra of 

degree n, and is therefore split by H. 

7.2. COROLLARY. With the conditions of the previous theorem, and assuming 

moreover that the characteristic of k does not divide n, the group H must contain 

subgroups isomorphic to Lagrangians of every symplectic module of order dividing 
2 

n . 

PROOF. As in Theorem 6.6, any symplectic module G' of order dividing n 2 

yields a division algebra @t of rank [@r : %] = I G'I ,  which has the property that 

every splitting group of ~r contains (an isomorphic image of) a Lagrangian of 
G'. Since ~r is similar to a central simple algebra of degree n, it is split by H;  
therefore, H contains (an isomorphic image of) a Lagrangian of G'. 

7.3. This last result yields a restriction on the minimal order of the groups 

which split UD(k, n): 

THEOREM. Let n = p; . . . .  p?p,+l"'" p, where r, >-_ 2 for i = 1 . . . .  , s and {p} are 

different primes. I f  H is a splitting group of UD(k, n ), where k is an infinite field 

whose characteristic does not divide n, then 

IH]>= n.p~,-2. . .p;s  -2. 

REMARK. This includes the fact that if ri -> 3 for some i, then UD(k, n) is not 

a crossed product (see e.g. [6, p. 110]). 

PROOF. Let p'  be the highest power of a prime p = pi dividing n. Consider 

the two examples of symplectic modules of order p2r of 1.6 and 1.7: namely, the 

elementary abelian group A2r and B2r, the direct product of two cyclic groups of 
order pr. Since p2~ divides n ~-, it follows from Corollary 7.2 that H contains a 

subgroup H1 isomorphic to a Lagrangian of A2r and a subgroup//2 isomorphic 

to a Lagrangian of B2r. Since all the Sylow p-subgroups of H are conjugate, we 

may assume that H~ and H2 are both contained in some Sylow p-subgroup H(p) .  

Proposition 1.6 shows that Hi is elementary abelian (of rank r) and Proposi- 

tion 1.7 shows that /42 is a direct sum Cp~ O Cp, of two cyclic groups with 

s + t = r. Therefore, H~ (3 H2 is elementary abelian of rank at most 2, whence 
[H, OH2[<=p 2. 
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Now, let HIH2 = {hlh2 [ hi E Hi for i = 1,2} C H(p). By counting the classes 
{H~h I h E H2}, we get [HIH2I = [H~[ tHz[ [H1N H2[ -~, whence 

In(p)[>= In , ]  In2l [H, f3 Hz[-'>=p:'.p -:. 

Consequently, {H(p){ _-_ p2( , -1) .  If r = 1, then H~ and /-/2 are cyclic of order p, 

whence [H(p)[_->p. This completes the proof that 

I H[ > p~("-')" " p~(~'-')ps+," " p,, 

since [HI =IIp [H(p)[.  

7.4. The preceding proof shows that in order to get a better bound for [H[, 
we need a bound for the order of the groups satisfying the condition of Corollary 
7.2. This seems to be a rather difficult problem, which will be dealt with 

elsewhere. Here we quote one result from [20]: 

THEOREM. Let (e~ . . . . .  e,~ ) be the invariant exponents of an abelian p-group P, 
with el ~ ' ' "  >= e,, >= O. If P contains (an isomorphic image of) a Lagrangian of 
every symplectic module of order p2,, then 

(7.4.1) e~+ev+~->_[ r ]  f o r v = l  . . . . .  r. 

(Here, [r/v] denotes the greatest integer q such that q <= (r/u).) 

7.5. Now, suppose H is an abelian splitting group of UD(k, n), let p be a 
prime dividing n and let H(p) be the Sylow p-subgroup of H. Let also pr be the 

highest power of p dividing n. From Corollary 7.2,'and from the fact that every 
p-subgroup of H is contained in H(p), it follows that H(p) contains an 
isomorphic image of a Lagrangian of every symplectic module of order p2,, 
whence the invariant exponents al . . . .  , a,, of H(p) satisfy relation (7.4.1). 

From this relation, it follows in particular that el + e2 => r and ev = ~[r/v] for 
v = 1 . . . . .  r, since e, _-> e,+l. Since e, is an integer, we even have: 

e~ O {-~ [~]  } for v - - 1  . . . . .  

where {p} denotes, for any real number p, the smallest integer q such that q _- p. 

Therefore, 

~ e "  =e '+e2+ ~ e">=r+~-=3 { l  [r]} ~=3 -= 

Since [H(p)l  =p~"- and IH[ = II, [H(p)[,  we have proved: 
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THEOREM. Let n = p~ . . . .  p:t, where {p~} are different primes, and let k be an 

infinite field whose characteristic does not divide n. I f  H is an abelian splitting 

group of UD(k,n) ,  then IH] is divisible by pR . . . .  p~', where 

REMARK. As a function of r~, 

R, = (r, log r,)/2 + O(r,). 

8. A survey of previously known results 

Some results on adequacy of groups are implicit in the recent literature. In this 

section, we collect those we are aware of and translate them in the notations of 

this paper. 

The adequacy to cyclic groups has been particularly investigated: 

THEOREM. Let k be a field of characteristic p >= 0 and let Cn be a cyclic group of 
order n. 

(a) (Risman [13, Theorem 1]) I f  IHI = n and if n and p are relatively prime, 

then Ca ~ k H if and only if H ~- Cr × Cs where s divides r and k contains a 

primitive s-th root of unity. 

(b) (Saltman [15]) If  n = p', then Ca ~ k  H if and only if n divides [ n  I . 

In particular, part (a) shows that if k has no n-th root of unity except 1, then 

Ca ~ k H  if and only if H = Cn. The same arguments as in [13] can be used to 
prove more generally: 

PROPOSITION. Let k be a field of characteristic p >-_ 0, let n be an integer not 

divisible by p and let G, H be two groups of order n. I f  G is abelian and if 1 is the 

only n-th root of unity in k, then G ~ k H if and only if H ~- G. 

The case where n is a power of p was studied by Saltman, who proved [16, 

Theorem 3.2]: 

THEOREM. Let k be a field of characteristic p :  0 and let G, H be two p-groups 

of the same order. I f  G is abelian and not cyclic, then G ~ k H if only if G ~- H. 

It was communicated to us by Saltman that the same holds if G, H are 

p-groups of the same order for some prime p and char (k )=  0. 

In the case where G is not abelian, much less is known. There is however one 

result for the case G = D2,, the dihedral group of order 2n: 
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THEOREM (Rowen and Sal tman [14]). If n is odd and if k contains a primitive 
n-th root of unity, then D2. ~ k C2,. 

There  is also an old result for the case G = C,, ~ Cp, a semi-direct  product  of 

cyclic groups: 

Tr~EOREM (Albert  I1]). If c h a r ( k ) = p  and if p does not divide m, then 
C,, ~ Cp ~ k Cpm. In particular, if p is odd, D2p ~ k C,_e. 

Appendix. Symmetric cocycles and the inflation map 

Let  G be a finite abelian group and e : Z " ~  G be a surjective homomor -  

phism. Le t  also A be a G-modu le .  Let t ing Z" act on A through e, we have an 

inflation map: 

inf : H2(G, A ) ~ H2(Z ", A ). 

The  aim of this appendix  is to provide a proof  of the following result: 

THEOREM. The kernel of inf : H2( G, A )--~ H2(Z", A ) is H2( G, A )sym. 

We need two lemmas: 

LEMMA 1. Every symmetric cocycle is cohomologous (in H2(G,A )) to a 
symmetric cocycle with values in A ~, the subgroup of A elementwise fixed under 
G. 

PROOF. Choose  a basis b = (o-1 . . . . .  or) of G, so that G = ( ~ r l ) @ " "  O (m),  

let C~(G,A) be the group of couples of families ((u~j)l~,.j~,, (b,)l~,~,) with 

u~j, b~ E A for all i, j and u, = 0; uij + uj~ = 0 for all i, j. 

Let  Z~(G, A )  be the subgroup of families for  which the following relations 

hold: 

(A.1) (o-i - 1)ujk + (¢j - 1)uk, + (crk - 1)u, = 0, 

(A.2) (¢i - 1)bj = N~ulj, 

where  Nj is the sum of all the e lements  in the subgroup Gj c G genera ted  by crj. 

Let  also B~(G,A) be the subgroup of families for  which there  exists a family 

( c i ) l ~ ,  in A such that: 

u,j = (o-, - 1)cj - (o'j - 1)c,, 

bl ~- N ic i ,  
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and let HI(G, A ) 2 2 = Z f f G / A  )/B~(G, A ). Then there is a canonical isomorphism: 

v :HZ(G,A)---~H~(G,A) 

which maps a cocycle f E Z:(G, A)  onto the couple (u~i, hi) defined by: 

u,j = f (0- , ,  0 - j ) - f ( 0 - j ,  0-,), 

b~ = ~ f(0-, o'~). 
o ' E a  i 

(See for instance [18, §1].) 

If f is symmetric, then u~j = 0 for all i, j, whence b~ E A c, by condition (A.2). 

Define then a cocycle g E Z2(G, A )  by: 

g(0-~.o-7')=0 fo r0  < k ,  m < n ~ - I  and k + m = < n i - 1 ,  

g(0-~,0-7')=b~ for0_-<k, m_-<n~- i  and k+m_->n, ,  

where n~ denotes the order of 0-. and 

g 0-~', o'j, = g(0-,',o', '). 
j i= l  

It is easy to check that g is a symmetric cocycle with values in A c and that 

v(f) = u(g), so that f and g are cohomologous. 

LEMMA 2. H:( G, A )sym lies in the kernel of inf : HZ( G,A )---~ H2(Z", A ). 

PROOF. Since Z" acts trivially on A °, the group H2(Z",A~)sy,, classifies the 
abelian group extensions of A ~ by Z"; therefore, 

H2(Z ", A G)sy m = Exp,(Z", A G) = 0, 

since Z" is Z-projective. Consider then the following commutative diagram: 

H2(G, A G)sy m ~"f, H2(Z-,aG)sy m 

H2(G, A )sym ~ H2(Z ", A ) 
inf 

where i ,  is induced by the inclusion map i : A  G__~ A. 
By Lemma 1, the left vertical map is surjective. From the fact that the right 

upper corner is zero, it then follows that inf(H~(G, A)~ym)= 0. 

PROOF OF THE THEOREM. By Lemma 2, it suffices to prove: Ker(inf)C 



144 J.-P. TIGNOL AND S. A. AMITSUR Isr. J. Math. 

H2(G, A)sym. Let F be the kernel of e : Z" ~ G. The terms of low degree in the 

Lyndon-Hochschild-Serre spectral sequence associated to the extension 

0 ~  F ~  Z" --* G---~0 

yield an exact sequence: 

HI(F,A)~ ~g iof H2(G,A) ) H2(Z", A)  

where tg is the transgression map (see for instance [8, p. 354]). From the 

definition of the transgression map (see [8, ch. 11, §9]), it follows easily that the 
image of tg lies in H2(G, A)sym. Therefore, ker(inf)C H2(G, A)sym, and the proof 

is complete. 

REFERENCES 

1. A. A. Albert, A note on normal division algebras of prime degree, Bull. Am. Math. Soc. 44 
(1938), 649-652. 

2. A. A. Albert, Structure of Algebras, Am. Math. Soc. Coll. Pub. 24, Providence, R.I., 1961. 
3. S. A. Amitsur, On central division algebras, Isr. J. Math. 12 (1972), 408-420. 
4. S. A. Amitsur, Divison Algebras, A Survey, in Algebraists' Homage: Papers in Ring Theory 

and Related Topics, Contemp. Math. 13 (1982), 3-26. 
5. M. Hall, The Theory of Groups, Macmillan, New York, 1959. 
6. N. Jacobson, PI-Algebras. An Introduction, Lecture Notes in Math. 441, Springer, Berlin, 

1975. 
7. N. Jacobson, Basic Algebra 11, Freeman, San Francisco, 1980. 
8. S. McLane, Homology, Springer, Berlin, 1963. 
9. C. Miller, The second homology group of a group, relations among commutators, Proc. Am. 

Math. Soc. 3 (1952), 588-595. 
10. B. H. Neumann, On ordered division rings, Trans. Am. Math. Soc. 66 (1949), 202-252. 
11. G. de Rham, Sur l'analysis situs des vari~t~s fin dimensions, J. Math. Pures Appl. 10 (1931), 

115-200. 
12. P. Ribenboim, Th~orie des valuations, Presses Univ. Montr6al, Montr6al, 1968. 
13. L. Risman, Cyclic algebras, complete fields and crossed products, Isr. J. Math. 28 (1977), 

113-128. 
14. L. Rowen and D. Saltman, Dihedral algebras are cyclic, Proc. Am. Math. Soc. 84 (1982), 

162-164. 
15. D. Saltman, Splittings of cyclic p-algebras, Proc. Am. Math. Soc. 62 (1977), 223-228. 
16. D. Saltman, Noncrossed product p-algebras and Galois p-extensions, J. Algebra 52 (1978), 

302-314. 
17. O. F. G. Schilling, The Theory of Valuations, Math. Surveys 4, Am. Math. Soc., Providence, 

1950. 
18. J.-P. Tignol, Produits crvis~s aMliens, J. Algebra 70 (1981), 420-436. 
19. J.-P. Tignol and S. A. Amitsur, Totally ramified splitting fields of central simple algebras over 

Henselian fields, J. Algebra, to appear. 
20. J.-P. Tignol and S. A. Amitsur, Symplectic modules, in preparation. 
21. C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 

281-298. 


