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ABSTRACT

The abelian Galois subfields of Malcev-Neumann formal series division rings
are determined. The results obtained in this paper lead to a lower bound for the
rank of Galois splitting fields of universal division algebras.

Introduction

Malcev-Neumann rings of formal series in non-commuting variables provide
an interesting class of examples of division rings: for instance, the second author
has shown in [3, §2], as part of his solution of the crossed product problem that
some of these rings are crossed products only of groups which are direct products
of cyclic groups of prime order.

In the present paper, Neumann’s definition of formal series division rings,
which uses a cocycle f to twist the multiplication of indeterminates, is restricted
in such a way that the resulting division rings & are finite-dimensional over their
center (see §2). Under this mild restriction, we obtain in §3 a complete
description of the subfields of &, which are Kummer extensions of the center
(i.c. abelian Galois over the center, which is assumed to contain sufficiently many
roots of unity). The general results of §3 are specialized in §§4 and 5 to the case
of iterated Laurent power series. We thus generalize the results of [3, §2].

In §6, we obtain some information on simultaneous crossed products. Roughly
speaking, the problem we deal with can be formulated as follows: suppose a
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central simple algebra is a crossed product of some group G; is it then
necessarily similar to a crossed product of some other group H? (Precise
definitions are given in 6.1.) As an application of the preceding results, we obtain
some relations on the invariant factors of abelian groups G and H for which this
property holds. Previously known results on simultaneous crossed products are
quoted without proof in §8.

A further application is given in §7, where a lower bound for the rank of
Galois splitting fields of universal division algebras is obtained.

1. Cohomology of trivial modules and skew-symmetric forms

1.1. Let G and A be abelian groups. We shall use the additive notation for A
and the multiplicative notation for G (though subsequently the results of this
section will be applied in an opposite situation, where A = K* is the multiplica-
tive group of a field and G is an additive abelian group).

A skew-symmetric map from G X G to A is a map

a:GxXG— A

which is Z-bilinear and such that a(e, o} =0 for all ¢ € G; therefore, a{o,7) =

—a(r,a)forall g, 7 € G. The set of all such maps is an abelian group which will
be denoted by Skew(G, A).

1.2. Skew-symmetric maps can be constructed from 2-cocylces f € Z*(G, A),
for the trivial action of G on A (i.e. o(u)=u for all u € A), as follows: recall
thatamap f: G X G — A is a 2-cocycle if it satisfies the cocycle condition, which
in the case of trivial action is of the form:

(o, n,p)=Ffr,p)—flor,p)+ flo,7p)— flo,7)=0 forallo,7.p € G,

for f € Z(G, A), we define a mapa,: G XG— A by:
af(077)=f(0’ T)_f(’T,O').

Clearly, a;(0,0)=0, but moreover, since G is abelian, a straightforward
computation yields:

af(a’p)+af(Tap)—af(o-T'vp): Bf(a,'r,p)—8f((r,p,7')+¢9f(p,0',7)=0,

which proves that a; is Z-bilinear; thus, a; € Skew(G, A).

If f€EBG,A),ie. f(o,7)=g(r)—g(or)+ g(o) for some map g: G — A,
then it s easily seen that a; =0, whence the mapf— a; induces a
homomorphism
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¥: H(G, A)— Skew(G, A).

The kernel of ¥ obviously contains H*(G, A )ym, the group of cohomology
classes which are represented by symmetric cocycles, i.e. cocycles f such that
f(o,7)=f(r,0) for all o, 7 € G. (Note that this definition of H*(G, A )., makes
sense (and will be used) even if the action of G on A is not trivial. In the case of
trivial action, every coboundary is symmetric, whence H*(G, A)ym=
Z*(G, A)yn/B*(G, A).)

1.3. ProrosITION. If G is abelian and acts trivially on A, then there is a split
exact sequence:

0— HXG, A)yn— HYG, A) —> Skew(G, A)—0.

ProOF. It is easy to see that the kernel of ¥ is H*(G, A ),ym. To prove the
rest, we construct a splitting map 6 : Skew(G, A)— H*(G,A), as follows:
Choose a basis oi,...,0, of G, so that G ={o)P" - P{a.), and denote
gt =gt---olif u={(u,...,u). For any a € Skew(G, A), define

6(a)(c*,0")= Z, pvia (o, 0;).

A straightforward computation shows that §(a) is well-defined and that §(a) €
Z*G, A). Moreover, since a is skew and bilinear,

Vo(a)(o*,0")= 2 pivia(oi, 0;) + Z uvial(oi, 0;)=a(e", o”),
> i<j

whence ¥6 = 1.

An alternative (non-computational) proof is to use the universal coefficient
theorem for cohomology (see e.g. [8, p. 77]), which provides a split exact
sequence:

0— Exty(Hy(G, Z), A)— H¥(G, A) —> Hom(H(G, Z), A)—0.

Since G is abelian, we have H,(G, Z) = G. Moreover, since the action of G on A
is trivial, Extz(G, A) and H*(G, A ), are naturally isomorphic, since they both
classify the abelian group extensions of A by G. Therefore,

Extz(H\(G,Z), A) = H¥G, A )yym.

On the other hand, by theorem 3 of [9, p. 595], there is a natural isomorphism:
H,G,Z)= G A G, where G A G denotes the second exterior power of G (as a
Z-module).
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Clearly, Homz(G A G, A) = Skew(G, A), whence we may identify:
Hom(H,(G,Z), A) = Skew(G, A)
and it is easy to check that under this identification, ¢ =¥.

1.4. Henceforth, we consider the case where G is a finite abelian group and
A =Q/Z. In this case, we refer to the elements of Skew(G,Q/Z) as skew-
symmetric forms. Each such form a induces a homomorphism d : G — G from
G to its character group G, by letting d(o)(r)= a(o, 7).

The skew symmetric form a is called regular if d is injective (whence also
surjective, since G and G have the same order), or in other words, if a(o, 7) =0
for all + € G implies o =0.

If G is a finite abelian group and a is a regular skew-symmetric form on G, the
pair (G,a) is called a symplectic (Z-)module. The structure of symplectic
modules is easily determined (see e.g. [11, §19] or [21, §4]):

THEOREM. If (G, a) is a symplectic module, then G = S @ T, a direct sum of
two isomorphic subgroups. Moreover, there is a basis (0, ..., 0.) of S and a basis
(71, ..., 7x) of T such that for each i, o: and 7, have the same order r;. Furthermore,
riv: divides v for i =1,...,n —1, and the form a satisfies:

1) a(o,0))=a(n,7)=0forall i,j=1,...,n

() a(oi,7;)=0if i#].

3) a(o,,)=r:' (mod Z) fori=1,...,n

Conversely, if r,...,r. 15 a sequence of integers and if
G=(Z/nZyx---x(Z/r.Z)’,

then, letting a4, 71, . . ., @, 7, denote the standard basis of G, relations (1), (2), (3)
above define a regular skew-symmetric form on G.

COROLLARY. If (G, a) is a symplectic module, then the invariant factors of G
appear in pairs: (1,11, 1>, I, . ..., In, I, ). Hence, the rank of G is even, and its order
is a square: |G|=(r.---r.).

1.5. Let (G, a) be a symplectic module. For any subgroup H C G, we denote
H*={0c €G|a(o,7)=0 for all r € H}.

A subgroup H is called isotropic it HC H", i.e. a(H,H)=0, and it is called
Lagrangian if it is maximal isotropic, i.e. H = H". For instance, the subgroups $
and T of Theorem 1.4 are Lagrangians of (G, a).
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At a later stage in this paper, we shall translate a problem of splitting fields to
a problem about Lagrangians of certain symplectic modules.

To determine the Lagrangians of a given (arbitrary) symplectic module seems
to be rather difficult. However, this determination is easy in two cases: when G
is elementary abelian (i.e. a direct sum of cyclic groups of prime order) and when
G has rank 2 (i.e. G is a direct sum of two cyclic groups).

LEMMA. For any subgroup H of a symplectic module (G,a), we have:
G/H"=H (not canonically). If H is a Lagrangian, then |G|=|HJ, and
rtkH=rkG=2rkH.

ProoF. Let A : G— H =Hom(H, Q/Z) be the composite map of 4:G— G
and of the restriction map p : G — H. Since 4 is an isomorphism and since p is
surjective, A is surjective. Moreover, its kernel is H*, since A(o)=0 is
equivalent to a(o, H)=0. Hence, A induces an isomorphism: G/H" = H. If H
is a Lagrangian, then H" = H and this equality yields the rest of the lemma.

1.6. ProPOSITION. Let (G, a) be a symplectic module. If G is an elementary
abelian group of rank 2r, then all Lagrangians of (G, a) are elementary abelian of
rank r, hence isomorphic to each other.

Proor. This follows immediately form the fact that subgroups of elementary
abelian groups are elementary abelian and from the preceding lemma.

1.7. Suppose now that G = S @ T, where S = (o) and T = (7) are isomorphic
cyclic groups of order r, and that a symplectic structure on G is defined by:
a(a,7)=r"' (mod Z). (Compare 1.4.) Then we can prove:

PRrRoPOSITION.  The Lagrangians of (G, a) are isomorphic to direct sums of
cyclic groups, (i) D (v) where w is of order s, v of order t and r = st. Conversely,
for every factorization r = st there is a Lagrangian of this type.

Proor. If r=st, one readily verifies that w = ¢’ and v = 7° generate a
Lagrangian of the required type. The rest follows from Lemia 1.5.

2. Malcev-Neumann division rings

2.1. Let G be a finite abelian group acting on a field K by automorphisms and
let F =K be the subfield of K fixed (elementwise) by G. Note that G is not
required to be a group of automorphisms of K| so that generally [K : F] divides
|G|, but [K:F}#|G]|; in fact, if G acts trivially on K, then F = K.

Let £ : Z" — G be a surjective homomorphism of the free abelian group Z"
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onto G (for some n). Then Z" also acts on K through ¢, namely: for « €Z" and
a €K, al(a)=cl{a)a).

Let f € Z*(G, K*) be a normalized 2-cocycle, i.e. f{1,0)= f(o,1)=1 for all
o € G. The inflation map induced by ¢ raises the cocycle f to a cocycle in
Z*(Z", K*) which for simplicity we shall also denote by f. In other words, by
definition:

fla,B)=f(ca, eB) for o, €Z".

Given K, G, f and ¢ as above, we construct the Malcev—-Neumann ring of formal
series D(K, G, f, ) as follows: its elements are the formal series

5= 2 AaZy (a. EK)

acZ”"

whose support supp(s) = {@ EZ" | a, # 0} is a well-ordered subset of Z" for the
anti-lexicographic ordering, i.e. the ordering for which the positive elements are
the n-tuples (ai,...,a,) such that, for some i, ; >0 and «; =0 for j > i

Addition in (K, G, f, £) has the usual meaning, and multiplication is defined
by the relations:

2.1.1) z.a = a(a)z, fora€eK and a €Z",
2.1.2) Za2p = f(a, B)Za+p for a, B €Z".

The multiplication is associative since f € Z*(Z", K*) and its unit is z, since f is
normalized. We shall identify z, with 1 € K and az, € 9(K, G, f, ¢) with a €EK.
It is well-known that @(K, G, f, ¢) is a division ring [10, Theorem 5.7].

2.2. ReMark. In [10, §5], B.H. Neumann considered a more general con-
struction, using an arbitrary cocycle f € Z*(Z", K*). In the present paper, we
consider only cocycles which arise by inflation from Z*G, K*), in order to
obtain finite-dimensional central division algebras: see 2.5 below.

Although the following observation is not used in the present paper, it is worth
noting that Neumann’s construction only depends on the cohomology class of
the cocycle f in H*(Z", K*). Therefore, the ring 2 (K, G, f, £) only depends, up to
isomorphism, on the image of f € Z*(G, K*) in H(G, K*)/H*(G, K*)ym, since
we have the following result:

ProrosiTiON.  The following sequence is exact:
1— H*(G, K*)m— H(G, K*) —> H*Z", K*).

A proof is given in the appendix.



120 J-P. TIGNOL AND S. A. AMITSUR Isr. J. Math.

2.3. The division ring Z(K, G, f, ¢) can also be considered as an iterated
Laurent series ring in the indeterminates z; = z, where B8; is the i-th element of
the standard basis of Z". Indeed, if a =(a),...,a,) = ZaB;, we get

(2.3.1) Zo = koztizyze -z

for some k. € K*, and we have the following relations:

(23.2) zia = Bi(a)z for a € K* and zz; = w;ziz:
where u; = (B, B)f(B;, B:) .
An iterated Laurent power series ring K((z1,..., z,)) can be constructed by

induction using these relations; namely,
K({(zi,.- ., ) =K{(z1,-..,z-0){(z)), [j=12,....n

is a Laurent power series ring in the indeterminate z; with coefficients in
K((zi,...,zj-1)), in which the commutation relations of z; with the coefficients
are derived from (2.3.2). By a proper identification, we actually have:

ProposiTION. D(K, G, f,£)=K((z1,...,2.)).

ProorF. One readily observes that the support of an element of
K((zi,...,z.)) is well-ordered, so that one can consider

K({(zi,...,2.) C DK G,f,¢).

The inclusion in the other direction follows from the fact that if s=
3a.2. € D(K, G, f,¢), then s =Sak.z} -+ - z3= by (2.3.1) and since the support
of s is well ordered:

S, Gakatssio

=
ap=m,

for some m, €Z. A simple induction argument completes the proof.

2.4. To simplify notations, we denote P (K, G, f, ¢) = %;. We now determine
the center 4; of &; and the rank [D; : €;].

With the aid of the cocycle f, we distinguish a subset I'; C Z": it is the set of all
y €Z" with the following properties:

(a) y(a)=a for all a EK,

(b) there exists d, € K* such that for all 8 € Z" the following relation holds:

(2.4.1) f(B. V(% B)" = d,B(d,)"

ReMARKs. (1) If an element d, as in (b) exists, then it is uniquely determined
up to multiplication by a non-zero element in the fixed field F. Indeed, if for



Vol. 50, 1985 MALCEV-NEUMANN ALGEBRAS 121

every BEZ", d,8(d,)"' =d,B(d})", then d'd,' € F*, whence d,=d, - c for
some ¢ € F*.

(2) We have I'; D Ker ¢, since if v € Ker ¢, then (a) clearly holds (by definition
of the action of Z" on K), and we can choose d, =1, since f(B,y)=f(yv.8)=1
for ali B €Z".

The following proposition provides a description of the center 4, of %;:

PROPOSITION. € is the set of all elements of 9; of the form:

> ¢ (dyz,)

yerf

with arbitrary ¢, € F = K°.

PROOF. Let s =2.ezra.z" The relation sa = as for all a € K is equivalent
to: a(a) = a for all @ € supp(s) and the condition that sz; = zgs is equivalent to
the requirement that a.z.zs = z3a.Z., wWhich amounts to:

a.f(a, B) = B(a.)f(B, ).

Therefore, s € 6; and only if supp(s)C I’y and for & € supp(s), the correspond-
ing coefficient a, satisfies (2.4.1). By Remark (1) above, a. is then of the form:
G = C..d, for some ¢, € F*; whence s € €, if and only if

$= 2 Cv(dvzv)

Y€y
for some ¢, € F.

2.5. THEOREM. T is a subgroup of finite index in Z" and
(% :6]=(@" :Ty).[K:F].

Proor. If v,y' €T}, then d,z, and d,z, are in €;, whence (d,z,)(dyz,) €
;. since (d,z,)(d,z,) ' =dy—yz,—, for some d,-, € K*, it follows from the
preceding proposition that y —y' €T, whence I'y is a subgroup of Z". Since
Ker ¢ CT; by Remark (2) of (2.4) and since (2" : Ker g )= | G | is finite, the index
of Iy in Z" is finite. The rest of the theorem is an easy consequence of the
description of %, in Proposition 2.4: indeed, if {k;} is an F-basis of K and if {a;}is
a set of representatives of the cosets of I'; in Z7, then the set {kiz,} is a 6;-basis of
9.

2.6. Recall that the degree of a finite-dimensional central division algebra is
defined as the square root of its dimension. The previous theorem yields the
following result on the degree of & (denoted by deg %;):
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CoROLLARY. deg %, divides |G |.

ProoOF. In (2.1), we already observed that [K : F] divides |G |. Since on the
other hand (Z" : Ty) divides (2" : Ker £) = | G |, Theorem 2.5 shows that [%; : €]
divides |G [, whence deg 9; divides |G |.

2.7. The most powerful tool for investigating the division ring & is the map
v:9% 7"
defined by:
v(s) = min(supp(s)),

i.e. v(s) is the minimal a for which z, has a non-zero coefficient. Clearly, v is a
valuation on 9y with value group Z" and residue field &; = K ; its restriction to
€; is a valuation with value group I'; and residue field &; = F, by Proposition 2.4.
The division ring & is strongly maximal with respect to v, in the terminology of
[17, p. 54], i.e. every pseudo-convergent sequence in %; has a pseudo-limit in %;.
In {12, p. 103], this is shown for f = 1 and with trivial action of G on K (i.e. for &,
commutative), but the proof carries over readily to our case. Similarly, 4; is
strongly maximal, whence maximally complete by [17, Theorem 8, p. 51],
whence also Henselian, which means that the valuation v on %; has a unique
prolongation to any algebraic extension of €; [17, Theorem 10. p. 54). If L is
such an extension, we denote by U,(L) the multiplicative group of all 1-units in
L, i.e. integral elements of L which are mapped onto 1 in the residue field L.
From the fact that L is Henselian, the following useful result is easily derived:

2.8. PrROPOSITION. If n is any integer which is not divisible by the characteristic
of L, then the group U,(L) is uniquely divisible by n.

Proor. If u € U\(L), then equation X" — u = 0 has a unique solution x € L
such that £ = 1in L, by [17, Lemma 1, p. 60], since the characteristic of L (which
in this case is equal to the characteristic of L) does not divide n.

3. The Kummer subfields of Z;

3.1. Our aim in this section is to determine the subfields of %; which are
Kummer extensions of 4;. We shall obtain a complete description in the case
where I'; = Ker ¢ this hypothesis holds, for instance, if G is the Galois group of
K/F, ie. if G acts faithfully on K.

Recall that a finite abelian Galois extension L/C is a Kummer extension if C
contains a primitive m-th root of unity, where m is the exponent of the Galois
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group Gal(L/C). Note that this requires that the characteristic of C does not
divide the rank of L over C. We introduce the notations:

KUM(L/C)={x €L*|x" €C} and kum(L/C)=KUM(L/C)/C*,

i.e. kum(L/C) is the factor group of KUM(L/C) modulo C*.
The group kum(L/C) is dual to Gal(L/C) by the bilinear pairing:

(o,a)=0o(a)a™,

whence kum(L/C)=Gal(L/C) (not canonically). For details on Kummer
theory, see e.g. [7, §8.9].

3.2. In a division algebra D with center C, any subfield which is a Kummer
extension of C will be referred to as a Kummer subfield of D. These subfields
can be constructed in the following way:

Assume C contains a primitive m-th root of unity for some m =1 and let A
be a finite abelian subgroup of exponent m of the factor group D*/C*. For each
a € A, choose a representative x, € D* and consider the C-spaces

C(A)=S Cx.

GaEA

which is clearly independent of the choice of representatives x,. One easily
verifies:

LEMMA. If the elements x, commute pairwise, then C(A) is a Kummer subfield
of D, and kum(C(A)/C)= A.

3.3. In our original division algebra %;, we consider the set . of all
monomials, that is:

My ={az, Ia €Z",a €EK*}.
For any s = £ 4.z, € &y, we denote by u(s) the leading monomial, i.e.:

BAS) = Qo) Zugs) -

A very simple and useful information is the fact that pw:9%— M is a
homomorphism; hence if 5, € 9§ commute, then w(s) and u(¢) also commute.
This enables us to show:

3.4. ProposiTioN. Every Kummer subfield L of 9y is conjugate to a Kummer
subfield L' which has the property that kum(L'/€;) is represented by monomials of
M.
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Proor. Let {a:} be a set of representatives in L of the elements of
kum(L/%;), and let L' =3 Cyu(a:). By (3.2), it follows that L' is a Kummer
subfield of 9; and kum(L'/%;) has the monomials u (a;) as a set of representa-
tives in L.

Let m be the exponent of Gal(L/%;) and let a["=c¢; € €%; then

L=%({c') and L'=%{n(c)™).

As p(c)ci'is a 1-unit in €;, we have w(c)c;' € €%™ by Proposition 2.8, whence
n(c)=c,mod €%™. It then follows from [7, p. 497] that L and L' are
%;-isomorphic, whence also conjugate in %, by the Skolem-Noether theorem.

3.5. Given a Kummer subfield L in 9, let L be its residue field and let
S. = ev(L) be the image of the value group v(L) in G. We also note that
FCL CK since K = %; and F=‘éf.

LEmMA The field L is a Kummer extension of F and S, acts trivially on L.

ProoF. First, we show that S, acts trivially on L. Let ¢ € S;, = ev(L) and
a EI: ; then there exists two elements s,,x, € L such that ev(x,)= o and
u(s:)=a. Since multiplication in L is commutative and since u is a
homomorphism, we have

a pu(x.)=p(sa) p(x)=p(x:). p(sa) = p(x). a

On the other hand, since u(x,)=b. 2, for some b € K* and since ev(x,) = o,
relation (2.1.1) (defining multiplication in &%) shows that

p(x-)a = o(a)p(x.).

Therefore, o(a)= a, as required.

Next, let Ly be the inertia subfield of L/%;, i.e. the maximal unramified
extension of %; contained in L. Since L/%; is Galois, the residue field L is Galois
over F and Gal(L/F) is canonically isomorphic to Gal(L/%;): see, e.g. [17,
Theorem 1, p. 62]. Therefore, L/F is an abelian Galois extension. Moreover,
since %; contains a primitive m-th root of unity, where m = exp(Gal(L/%;)), its
residue field F also contains a primitive m-th root of unity, whence L/Fisa
Kummer extension.

3.6. From now on, we assume I'; = Ker &. Under this restriction, we prove:

ProposITION. Let L be a Kummer subfield of &; and S, its corresponding
subgroup of G. There is a short exact sequence:
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s.: 1> kum(L/F)— kum(L /%) — S, — 1

and since kum(L/%,) is an abelian group, we have s, € H*(S., kum(L /F))sym.

PrOOF. Let L; be the inertia subfield of L/%; as before, and consider the
short exact sequence:

1— Gal(L/Ly)— Gal(L/%;)— Gal(L;/%;)— 1.

By duality between Galois groups and Kummer groups, we get:
(3.6.1) 1— kum(L+/%;)— kum(L/%;)— kum(L/Lr)— 1.

In order to obtain the exact sequence s, from the sequence above, we note first

that the canonical isomorphism Gal(Ly/%;)= Gal(L/F) for inertial extensions

(see [17, Theorem 1, p. 62]) yields a canonical isomorphism: kum(Lr/%;)=

kum(L/F). On the other edge of (3.6.1), we have to show: kum(L/Lr)=S;.
Since kum(L/Ly)C L*/L%, we may consider the map induced by v:

(3.6.2) v :kum(L/L;)— v(L)/v(Lr).

Since Lr/%; is' unramified, we have v(L;)=I;=Kere, whence we get a
homomorphism:

ev :kum(L/L;)—S;.

To complete the proof, we show that this map is an isomorphism or, equivai-
ently, that the map v in (3.6.2) is 1-1.

Denote by U(L) the group of all units in L and by U,(L) the group of 1-units.
We have exact sequences of natural maps:

(3.6.3) 1- U(L)—>L*—>v(L)—>0,
(3.6.4) 1-> U(L)—> U(L)> L*—1.

Comparing the sequence (3.6.4) with a similar exact sequence with Ly instead of
L, and taking into account the fact that L, = L, we get an isomorphism:

U(L) U(Lr)= U«L)/ U«(Lr)

which shows, by Proposition 2.8, that the group U(L)/U(Lr) is uniquely
divisible by the exponent of Gal(L/Ly), which we denote by e.
Next, consider the following commutative diagram with exact rows:
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1— U(L) U(Lr)— L*/L%— v(L)v(Lr)—0

l L

1> U(L)YU(Lr)— L*/L— v(L)/v(Lr)—0

in which the vertical maps send each element onto its e-th power and the rows
are obtained from (3.6.3). Since v(L)/v (L) is killed by e, by [17, Theorem 5, p.
66) and since U(L)/U(Lr) is uniquely divisible by e, the snake lemma shows that
the e-torsion part of L*/L% is isomorphic to v(L)/v(Lr) under an isomorphism
induced by v. This shows that (3.6.2) is an isomorphism, since the e-torsion part
of L*/L% is kum(L/L).

Now, the short exact sequence s, is an element of H(S., kum(L/F)), as a
group extension, with S; acting trivially on kum(L/F), by Lemma 3.5. Since
kum(L/%;) is an abelian group, it follows easily that s, is represented by
symmetric cocycles, whence s, € H*(SL, kum(L/F))ym.

3.7. CorOLLARY. For any Kummer subfield L of 9,
[L:%]=|S.|.[L:F]

3.8. Next we show that the field L, the group S, and the cocycle s, which are
associated to the Kummer subfield L are all invariant under conjugacy:

ProposiTION. If L and L' are two conjugate Kummer subfields of %y, then
L'=L, Si.=S. and every €;-isomorphism ¢ : L — L’ induces an isomorphism
¢4t kum(L/%;)— kum(L'/€;) such that the following diagram is commutative :

s : 1> kum(L/F)— kum(L/%,)— S, — 1

H b

sc 11— kum(L'/F)— kum(L'/%;)—> S..— 1
which means that s. = s+ in H(Sy, kum(L/F))yn.

Proor. Let ¢:L—>L' be a % -isomorphism. By the Skolem-Noether
theorem, there exists a € % such that ¢(x)=axa ' for all x € L, whence
v(p{x))=v(a)+v(x)—v(a), and

(38.1) v(ie(x))=v(x) forx€lL.

This already proves v(L)= v(L"), whence S. =S,

Moreover, relation (3.8.1) also shows that ¢ induces an F-isomorphism
¢ [ — L. Since L and L' are Galois over F and are both contained in K, we
must have L = L’.
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Finally, it is easy to see that the induced automorphism &, of kum(L/F) s the
identity, since if x € KUM(L/F), then ¢(x)= {x for some root of unity ¢ € F.
The rest of the proposition follows easily from this observation.

3.9. The results obtained so far are valid for the Kummer subfields of all the
division rings @; = 2(K, G, f. ¢) which are defined with the same K, G and ¢,
since no reference to the cocycle f was made. In the rest of this section, we
obtain necessary and sufficient conditions for the cocycle s, to belong to a
Kummer subfield of 9. To this end, we relate the cocycles f and s; with the aid
of the following diagram:

Z%(S, KUM(L/F))ym ——> H*(S1. K*)

[ ¥
*l T ress,

H*(S., kum(L/F))sym HYG,K*)

The horizontal map i, is induced by the inclusion i : KUM(L/F)< K*, the left
vertical map e is induced by the map e : KUM(L/F)— kum(L/F), which is the
reduction modulo F* and the right vertical map is the restriction from G to ;.
The class of the cocycle f defining &, lies in the lower right hand corner, i.e. in
H*(G,K*), while s, appears in the lower left hand corner in
H*(S,, kum(L/F))y.. Their relation is given in the following main result:

3.10. THEOREM. If L is a Kummer subfield of %;, then there exists a cocycle
h € Z*(S., KUM(L/F))ym such that:

(1) i, (h)=ress(f), and

(2) e (h)=s..

It is interesting that the converse also holds if F contains sufficiently many
roots of unity (e.g. a primitive |G |-th root of unity: see 3.14 below). More
precisely:

3.11. THEOREM. Let L be a Kummer extension of F in K and let S C G be a
subgroup of G acting trivially on L. If there exists a cocycle h€E
Z*(S,KUM(L/F))ym such that i,(h)=res$(f). then there exists a Kummer
subfield L in %, such that:

(1) L is the residue field of L,

) S=ev(L) (=S.),

(3) The cohomology class s, of (3.6) satisfies: s, = e, (h), provided F contains
sufficiently many roots of unity.
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We shall prove both theorems along similar lines and we start with the first
theorem:

3.12. Proor oF THEOREM 3.10. In this case the field L is given, but since our
objects are invariant under conjugation, by Proposition 3.8, we may assume in
view of Proposition 3.4 that kum(L /%) is represented by monomials. Hence, for
every o €S, we can choose a monomial y, € L whose class y, € kum(L/%)
satisfies:

v (¥,) = o.

Let

Yo = QoZp(0)s

where a, € K* and p(d) EZ" is such that ep(o)=o0.
Computing y.y. we obtain:

Yo¥r = 0 (ar)Zp(0)200r)
= a,0(a, ) f{T, T)Zpiwrpir)
= ,0(a: )8 2 f (0, T)Yor [ 2 st Zotornin]-
To compute the last factor, we note that
Zpon) - Zowor-penromy = f(p(aT), p(a) = p(07) + p(T)) Zo(0)epir).-
Since p(o)—p(or)+ p(7) € Ker ¢, and since f is normalized, it follows that

. _
Z p(or) - Zp(a)+e(r) = Zp(o)-plarytp(s)-

From the fact that p(o)—p(or)+p(r)EKere =1}, it also follows that
Zp(orptonr+on € €3, by (2, 4). Denote:

(0, 7) = Zp@rpieryrom € €73
hence we obtain:
(3.12.1) VoY, = h(a, 7)c(0, 7)Yor,
where

h(o,7)=a,0(a,)a.. f(o, 7).

Our final step is to show that the cocycle h satisfies the conditions of (3.10).
First, since y, and y, commute (for they belong to L) and since clearly
c(o,7)=c(r,0), it follows from (3.12.1) that h(o,7)= h(r,o), whence
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h € Z*(S, K*)yym. Also, by definition of A, it is clear that h is cohomologous to
the restriction of f from G to S, which proves (1) of (3.10). To prove the rest, we
consider relation (3.12.1) modulo €7%:

yoy. = e(h(0, 7))¥ors

where e : K*— K*/F* is the canonical map. Since {v, } is a set of representatives
of S in kum(L/%;), this relation shows that e(h(a, 7)) € kum(L/F) and that the
cocyle e, (h) represents the group extension s, of (3.6). Therefore, h(o, 7)€
KUM(L/F) and e (h)=s., which concludes the proof.

3.13. ProOF OF THEOREM 3.11. We start with a field L C K, a group S acting
trivially on L and a cocycle h € Z*(S, KUM(L/F)),,m such that i, (h) = res$(f).
This last condition implies that there exists {d,},ec C K* such that for all
o, TES:

h(o, )= a,0(a.)axf(o, 7).
For each o € S, we choose an element p(o) EZ" such that ep(c)= o and we
define:
Yo = 8oZpoy EMy  and  ¢(0,7) = Zpor-penrron € €7 -

As before, a straightforward computation yields:

Yoy = h(a, 7)c(0, T)Yor.

Since h and ¢ are symmetric and since S is abelian, it follows immediately that
Yo¥- = ¥.¥, for all a,7 €S. Let y, =y, €5 €D}/ €%; since c(o,7)E €}, we
obtain:

3o 3. = e(h(0, 7)o,

where e : K* — K*/F* is the canonical map. Hence, the subgroup A C 9%/€%
generated by kum(L/F) and the set {,} is an extension of kum(L/F) by S, with
cocycle e, (h) € Z*(S, kum(L/F)): The following sequence

1— kum(L/F)— A — § — 1

is exact.

At this stage we introduce the hypothesis that F contains a primitive m-th
root of unity, where m is the exponent of A; then by Lemma 3.2 the algebra
L=%/(A) is a Kummer subfield of & such that kum(L/€;)= A, whence
[L:%])=|A|=|S|.I[L:F].
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Since the residue field of L obviously contains L and since ev(L) clearly
contains S, it follows from the last relations and from Corollary 3.7 that L is the
residue field of L and that ev(L)= S, which completes the proof.

3.14. REMARK. In the proof of the preceding theorem, we have constructed a
finite abelian subgroup A C @%/%% and we needed a primitive m-th root of
unity, where m is the exponent of A. Since A turns out to be kum(L/%;), the
integer m is also the exponent of the Kummer subfield constructed. This
exponent obviously divides the rank [L : €] which divides the degree of % ;
moreover, deg &; divides | G |, by Corollary 2.6. Hence, a primitive | G |-th root
of unity in F is sufficient in all cases.

4. The case of trivial action

4.1. In this section, we consider the extreme case where the group G acts
trivially on the field K. As in (1.2), we correspond to the cocycle f € Z*(G, K*) a
skew-symmetric map a;: G X G — K* by setting:

a;(o,7)=f(o,7)f(1,0)"  forall o7 €G.

PROPOSITION.  Let m be the exponent of G. The cocycle f satisfies the condition
that Ty = Ker ¢ if and only if a; is regular, i.e. a;(o, G)=1 implies o = 1. This
condition holds only if K contains a primitive m-th root of unity.

Proor. Since the action of G is trivial, T is the set of all y € Z" such that

fBVf(vB)Y' =1 forall BEL";

in other words, I'y =& '(R), where R={c EG ] a;(o, G)=1}. Therefore,
I'; =Ker ¢ if and only if R = {1}, which proves the first part.

If R = {1}, then the exponent of the group a,;(o, G) C K* is equal to the order
of g, for all ¢ € G; if G has exponent m, then it contains an element o of order
m, whence K* also contains an element of order m, which is a primitive m-th
root of unity. This completes the proof.

If T =Ker &, then choosing a primitive m-th root of unity in K* we may
identify a; with a regular skew-symmetric form on G. Henceforth, we assume
that Ty = Ker ¢ and we denote simply by G the symplectic module (G, ay).

Recall that an isotropic subgroup H C G is a subgroup for which a,(H, H)=
1. These subgroups completely determine the subfields of 9;, as shown in the
following theorem:
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4.2, THEOREM. Every extension L of €; in 9 is a Kummer subfield of % and
ev(L) is an isotropic subgroup of G. The mapL — gv(L) defines a one-to-one
correspondence between the set of classes of conjugate subfields of &; which contain
%; and the set of isotropic subgroups of G. This correspondence satisfies:

(1) [L:%]=]ev(L)| and ev :kum(L/%;)— ev(L) is an isomorphism.

(2) If LiC L,, then ev(L,)C ev(L,) and if S., S, are isotropic subgroups such
that S; C S,, then there exists subfields L,, L, such that L, C L, and ev(L;) = S, for
i=12.

Proof. The valuation v on %; makes % a totally ramified extension of %;
since €, = F = K = 9. Hence, every extension of %, in 9, is totally ramified,
whence a Kummer extension of %, since K contains a primitive m-th root of
unity: see {17, Theorem 4, p. 66].

Let L be a (Kummer) subfield of &; and let S; = ev(L)C G as in §3. Since
L = F =K, we have KUM(L/F) = K* and kum(L/F) = 1; it then follows from
Theorem 3.10 that ress (f) is symmetric, hence a;(o, 7) =1 for o, 7 € S;, which
means that S; is isotropic in G.

Conversely, let S be an isotropic subgroup of G; then a;(S,S)=1, which
means that res$(f) € Z*(S, K*),m and we can apply Theorem 3.11 with h =
resS(f) and L = K to obtain a Kummer subfield L of @; such that § = gv(L) as
required.

Before completing the proof that ev induces a one-to-one correspondence
between classes of conjugate subfields and isotropic subgroups, we observe that
(1) readily follows from Proposition 3.6 since kum(L/F) = 1 for every (Kummer)
subfield L.

Next, we prove (2): let S; C S, for some isotropic subgroups of G and let L,,
L, be two Kummer subfields such that ev(L;) = S;. By Proposition 3.4, we can
find Kummer subfields L1, L; which are conjugate to L, and L, respectively, and
such that kum(L!/%;) is represented by monomials in .#; for i = 1,2. In other
words, kum(L;/%;) and kum(L5/%;) both lie in the factor group (M;. €%)/€%.

Clearly, €% C Kerev since v(€7%) =1, =Ker ¢; moreover it is easily seen,
using Proposition 2.4, that M N Kerev C €%, so that the homomorphism
ev :(M;. €%)/€%— G is actually an isomorphism. Now, by (1) and by Proposi-
tion 3.8, we have gv (kum(Li/%4;))=ev(L})=S; for i =1,2; butsince S, C S, it
follows that kum(L1/F)C kum(L;/F) and hence L C L; since KUM(L{/F) and
KUM(L:/F) generate L; and L, respectively; also ev(L?) = S;. This proves (2).

Moreover, if S =S, then obviously Li= L;; since L' is conjugate to L; for
i =1,2, this shows that if ev(L,)= ev(L), then L, and L, are conjugate. To
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complete the proof, it now suffices to note that ev is well-defined on classes of
conjugate subfields of & by Proposition 3.8.

4.3. COROLLARY. The isomorphism classes of Galois groups of maximal
subfields of 9; are identical to the isomorphism classes of Lagrangians of the
symplectic module G.

Proor. Recall that a Lagrangian of G is by definition a maximal isotropic
subgroup; they thus correspond to maximal subfields of ;. Since the Galois
group of a Kummer extension is isomorphic to its Kummer group, the corollary
readily follows from the preceding theorem.

4.4, If the field K is algebraically closed, then we can apply a recent result of
the authors [19] to prove:

THEOREM. If K is algebraically closed, then for every splitting field M of %,
Galois over €;, the Galois group Gal(M/%;) contains (an isomorphic image of) a
Lagrangian of G.

ProOF. By the main theorem of [19], the splitting field M contains (an
isomorphic image of) a maximal subfield L of %;; hence Gal(L/%;), which is
isomorphic to a Lagrangian S of G, is a homomorphic image of Gal(M/%;).
Since the residue field K of %; is algebraically closed, M is totally ramified over
%;. It the characteristic of K does not divide [M : ;], then it follows from [17, p.
66] that Gal(M/%;) is abelian; in this case, since S is a homomorphic image of
Gal(M/ %), it is also isomorphic to a subgroup of Gal(M/%;) and the theorem is
proved.

If the characteristic of K, which we denote by p, divides [M : %], then let P be
a p-Sylow subgroup of Gal(M/%;) and let N = M” be its fixed field. Since p does
not divide [L : €;], we have L C N; but N is Galois over 6; with abelian Galois
group, by [17, p. 66], whence S is isomorphic to a subgroup of Gal(N/%;). On
the other hand, since N is Galois over 4, the corresponding subgroup P is
normal in Gal(M/%;) and it follows from [5, Theorem 15.2.2] that Gal(M/%;)
contains a subgroup isomorphic to Gal(N/%;). Therefore, Gal(M/%;) also
contains a subgroup isomorphic to S and the proof is complete.

5. Laurent power series

5.1. The division algebras &; with trivial action of G on K are closely related
to some other known division algebras, which are constructed as follows:
Let ri, ..., r. be n positive integers and let iz be the least common multiple of
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r,..., M. Let also K be a field containing a primitive m-th root of unity w; then
w; = @™ is a primitive ri-th root of unity for i =1,...,n.
Consider the iterated Laurent series ring in 2n non-commuting indetermi-

nates:
D(K,r,...,1)=K({(x1, Y1, Xu, Yu))

with the multiplication table:
x.a = ax;, yia = ay; for a €K,
XiXj = X;Xi, iy = Yi¥i
xy;, = yx: for i#j,
Xiyi = iy
These division rings were first considered in [3, §2] (see also [6, Chapter II, §5])

in order to construct non-crossed-product division algebras, and they are of the
type described in the previous sections:

5.2. ProposITION. D(K,ry,...,1.)=D(K, G,f, €) for some abelian group G
acting trivially on K, some mape : 2" — G and some cocycle f € Z*(G, K*) for
which T, =Kere.

Proor. Let G =(Z/nZy % x(Z/r,Z) and let o, 7i,...,0., 7. be the
standard basis of G, so that o; and 1, have order r.. Let a : G X G — K* be the
skew-symmetric map defined by:

a(o,0))=a(r,7)=1 for all i, j,

a(o;,7)=1 for i# j,

a(a}, Ti) = W;.
It follows from Proposition 1.3 that there exists a cocycle f € Z*(G, K*) such
that f(o,7)f(r,0) ' =a(a, 1) for all 0,7 €EG. Now let ¢ :Z" - G be the
canonical homomorphism, which maps the standard basis 8, ..., B2. of Z*" onto
01, T1,...,00, T.. From Proposition 2.3 we conclude that (K G, f &)=
D(K,ry,...,r.) by mapping z;-1—x and z,—y,. Moreover, the skew-

symmetric map a = a; is easily seen to be regular, whence I'; =Kere by
Proposition 4.1.

5.3. The preceding proposition has also an “almost” converse result:

PRrOPOSITION.  Let G be an abelian group acting trivially an a field K and let
f € Z*(G,K*). If the corresponding skew-symmetric map a; € Skew(G, K*) is
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regular, then there exist integers r,,. .., r, and a homomorphism ¢ : Z*" — G such
that (K, G,f,e)=D(K,n,..., ).

ProoOF. Let m be the exponent of G. Since gy is regular, it follows from
Proposition 4.1 that K contains a primitive m-th root of unity w, which we use to
identify a; to a regular skew-symmetric form on G. Theorem 1.4 then shows that
G has a basis (o4, 11, .., 0a, T.) such that

=1

a (o, 07)= ap(1i, 1) =1, a(o,1;)=1 foriZj and ai(o,n)=0™",

where r; denotes the order of o;, which is equal to the order of 7. If £ : 2" > G
maps the standard basis of Z** onto ¢1,71,...,0., T, it then follows from
Proposition 2.3 that Z(K, G,f,e)=D(K,r,...,1).

5.4. The results of the preceding section yield a different proof of [3, Theorem
3] (see also [6, Theorem 1, p. 102]):

THEOREM. Let p be a prime number and let K be a field containing a primitive
p-th root of unity. Every maximal subfield of D(K, p,...,p) (with n times p) is
Galois over the center with elementary abelian Galois group of rank n. Moreover, if
K is algebraically closed, then the Galois group of every Galois splitting field of
D(K,p,...,p) contains such a group.

Proor. From Proposition 5.2, it follows that D(K,p,...,p)=2(K, G, f, ¢)
with an elementary abelian group G of rank 2n. By Theorem 4.2, every maximal
subfield is Galois over the center and by Corollary 4.3, its Galois group is
isomorphic to a Lagrangian of G, and is therefore elementary abelian of rank n,
by Proposition 1.6. The rest follows from Theorem 4.4.

5.5. Similarly, we have:

THEOREM. Let r be an integer and let K be a field containing a primitive r-th
root of unity. Every maximal subfield of D (K, r) is Galois over the center with a
Galois group isomorphic to a direct product of two cyclic groups whose orders
multiply to r. Moreover, if K is algebraically closed, then the Galois group of every
Galois splitting field of D(K, r) contains such a group.

The proof is similar, using Proposition 1.7 instead of 1.6.

6. Simultaneous crossed products

6.1. DEFINITIONS. A group G is said to split a central simple algebra A over
a field F if A is split by some Galois extension K of F whose Galois group
Gal(K/F) is isomorphic to some subgroup of G.
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If k is a field and if G, H are two groups, we say that H is G-adequate over k
and we denote G =  H if every simple k-algebra split by G is also split by H. In
other words, this means that for every extension F Dk, every central simple
algebra over F which is similar to a crossed product of some subgroup of G is
also similar to a crossed product of some subgroup of H.

The aim of this section is to show how the results of the preceding sections can
be applied to yield some information on adequacy of finite groups. We first note
the following immediate consequences of the definitions:

PROPOSITION.

(a) If G = H, then G = ¢ H for every field F D k.

(b) If G is isomorphic to a subgroup of H, then G = H.
© If G =G and G' >, G", then G > G".

6.2. Next, we investigate how adequacy of direct products relate to adequacy
of the factors. The following lemma is probably well-known, but we include a
proof forthe reader’s convenience.

LEMMA. Let G, and G be finite groups and let J C G, X G be a subgroup of
their direct product. If |G,| and |G.| are relatively prime, then J=
(J N G)Yx(JN Gy).

Proor. Let J; be the image of J under the projection map 7, : G\ X G, -
G1. Since the kernel of m, is G. (= 1X G in G, X (;), the map 7, induces a
canonical isomorphism: J/J N G, =J,.

Since |J;| and |J N G.| are relatively prime, it follows from theorem 15.2.2 of
[5] that J contains a subgroup Ji isomorphic to J,. This subgroup clearly lies in
the kernel of the projection map m.: G X G:— G-, 1.e. in G|, since its order is
relatively prime to | G,|. Theorefore, J; C J N G,, whence

I(TNGYXI NG =Tl 1TNG.

As J/J N G,=J,, we also have | J,|.|[J N G.|=|J
yields: [(JN G x(J N G|=|T].

Since  obviously JD(UNG)X(ING,), it follows that J=
JNGYxEInN G).

, and the preceding inequality

6.3. LemMA. Let G, and G: be two finite groups of relatively prime orders and
let F be a field. If A is a central simple F-algebra split by G\ X G,, then
A = A QrA, for some algebras A, A, split by G, and G, respectively. Moreover,
every splitting group of A splits A, and A..
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Conversely, if A, and A, are central simple F-algebras split by G, and G,
respectively, then A, Q¢ A, is split by G, X G,.

Proor. Let K be a splitting field of A, Galois over F with Galois group
Gal(K/F) isomorphic to a subgroup of G, X G,. By Lemma 6.2,

Gal(K/F) = (Gal(K/F)N Gy) x (Gal(K/F) N G,),

whence K = K, Q¢ K; for some subfields K, K; of K such that Gal(K;/F) =
Gal(K/F)N G (for i = 1,2). This implies in particular that [K,: F] and [K,: F]
are relatively prime.

Since the index of A divides [K : F]=[K,: F][K;: F}, it follows from [2,
Theorem 5.18] that A ~ A, QrA,, where the index of A; divides [K : F] for
i=1,2.

The indices of A, and A, are thus relatively prime, whence A, and A, are
both split by every splitting field of A, by [2, Theorem 4.10]: this already shows
that every splitting group of A splits A, and A,. In particular, K splits A; and
A,, whence K, splits A, and K splits A,, since the index of A, (resp. A,) is
relatively prime to [K:K,|=[K;:F] (resp. to [K:K;}=[K;:F]). Since
Gal(K,/F) and Gal(K,/F) are isomorphic to subgroups of G, and G respec-
tively, this proves that A; is split by G;, for i = 1, 2. The converse is clear, since if
K, K are splitting fiels of A; and A, respectively and if the ranks of K, and K,
are relatively prime over F, then K, ®=K, is a splitting field of A, QrA..

6.4. THEOREM. Let Gy, G,, H,, H, be finite groups and let k be a field. If |G, |
and |H,| are both relatively prime to | G,| and |H,|, then G, x G, > H, x H, if
and only if G, > H: and G, > «H,.

PrOOF. Assume first G: X G. 2 H, X H, and let A be a central simple
algebra split by G,. Since G, is isomorphic to a subgroup of G, X G,, we have
G, >« H, X H; by transitivity of =, whence A is split by H, X H,. Since | H, |
and | H:| are relatively prime, the previous lemma shows that A = A, QrA,,
where A; is an algebra split by H; for i = 1,2. Moreover, it also shows that A,
and A, are both split by G,, since A is split by G.

Now, the index of A, divides |G,| and |H.|, since G, and H, split A,,
whence A;~1 (i.e. A, is a matrix algebra) since |G, | and | H,| are relatively
prime. Therefore, A ~ A,, whence A is split by H;: this proves G; > H, and
we similarly have G, = H,.

Conversely, assume G, = « H; and G; = « H, and let A be an algebra split by
G1 X G,. The previous lemma shows that A = A; ®r A, where A, is split by G;
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for i = 1,2. By hypothesis, it follows that A; is split by H; and then, by Lemma
6.3 again, that A = A, QrA; is split by H, X H,. This completes the proof.

6.5. CoroLLARY. If G and H are finite nilpotent groups, then, denoting by
G(p) (resp. H(p)) a Sylow p-subgroup of G (resp. H), we have G = . H if and
only if G(p) = H(p) for all primes p.

Proor. This readily follows from the theorem, since finite nilpotent groups
are direct products of their Sylow subgroups [5, Theorem 10.3.4].

6.6. When G is abelian, the results of the previous sections yield rather strong
conditions on the groups which are G-adequate:

THEOREM. Let G be an abelian group and let k be a field whose characteristic
does not divide |G|. If G = H for some group H, then H contains (an
isomorphic image of ) a Lagrangian of every symplectic module containing (an
isomorphic image of) G as a Lagrangian. In particular, |G| divides |H|.

Proor. Let K be an algebraic closure of k and let (G, a) be a symplectic
module containing G as a Lagrangian. By Lemma 1.5, it follows that |G'|=
|G I, hence the characteristic of K does not divide | G’|. Choosing a primitive
exp(G')-th root of unity in K, we may identify the form a to a regular
skew-symmetric map a € Skew(G', K*). By Proposition 1.3, there is a cocycle of
f € H(G', K*) whose corresponding form a; is a. Consider then the algebra
9 =D(K,G',f,e) (for some mape :Z" — G'): since G is a Lagrangian of
(G, ay), it splits &, by Corollary 4.3. Now G = H and €; D k, hence H also
splits ;. By Theorem 4.4, it follows that H contains an isomorphic image of a
Lagrangian of G’. Therefore, |G| divides |H|, since the order of every
Lagrangian of G’ is equal to |G|, by Lemma 1.5. This completes the proof.

6.7. When H also is assumed to be abelian, then G = H if and only if
G(p)=>« H(p) for all primes p, by Corollary 6.5. When dealing with adequacy of
abelian groups, we may thus restrict to abelian p-groups.

In order to obtain explicit relations on the invariant factors of abelian groups
G, H such that G = H, we quote the following result of [20]:

Let G and H be abelian p-groups (for some prime p); choose an integer n
such that 2n =1k G, rk H, and let (g1,..., g2) and (hy,..., hy,) with g, =+ -+ =
8. Z0and hy = - - Z h,, =0 be the exponents of p in the invariant factors of G
and H respectively. We refer to these sequences as the invariant exponents of G
and H respectively.
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ProrosiTiON. G is a Lagrangian in a symplectic module M, with invariant
exponents (g1+ 82,8+ 84,.--,8m—1 1 §2.) (each twice repeated) and also in a
symplectic module M, with invariant exponents (g1, 82, . . ., 82n) (each twice). If H
is isomorphic to some Lagrangian of M, and to some Lagrangian of M, then

(67.1) g2i~1 + 82 = h2,’~1 + hz,' and 82i-1 = hz,‘al = hz,’ = £2i for i= 1, A (5

6.8. This proposition has an immediate consequence for the adequacy of
groups:

COROLLARY. Let G be an abelian p-group and let H be a p-group such that
|G |=|H|.If G = H for some field k of characteristic different from p, then H is
abelian and the invariant exponents of G and H are related by (6.7.1).

Proor. From Theorem 6.6, it readily follows that H is isomorphic to a
Lagrangian of every symplectic module containing G as a Lagrangian, since
|G|=|H|; therefore, H is abelian and the rest follows from the previous
proposition.

6.9. CoroLLARY. If G and H are finite abelian groups such that G > H and
H = G for some field k whose characteristic does not divide |G | nor |H|, then
G=H.

ProOF. If follows from Theorem 6.6 that | G | divides | H | since G = « H, and
that | H | divides | G | since H =« G. Therefore, | G |= | H|. By Corollary 6.5, we
also have G(p) >«H(p) and H(p) > G(p) for all primes p, whence the
invariant exponents of G(p) and H(p) are related by (6.7.1) and similar relations
with g and h, permuted. From these relations, it clearly follows that the
invariant exponents of G(p) and H(p) are equal, whence G(p)=H(p) for all
primes p. Therefore, G ~ H.

In other words, this corollary shows that if G and H are non-isomorphic finite
abelian groups and if k is a field whose characteristic is relatively prime to |G |
and | H|, then either there is a simple k-algebra which is a crossed product of a
subgroup of G but not of a subgroup of H, or there is a simple k-algebra which is
a crossed product of a subgroup of H but not of a subgroup of G.

7. Splitting groups of universal division algebras

7.1. The results of the preceding section yield some information on the
minimal Galois extensions which split the universal division algebra UD(k, n),
thanks to the following theorem, due to the second author [4, p. 15]:
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THEOREM. Let k be an infinite field. If the universal division algebra UD(k, n)
is split by a group H, then H splits every central simple algebra of degree n over any
field F D k. Therefore, G = « H for every group G of order dividing n.

The second assertion follows from the first, since every central simple algebra
split by a group of order dividing n is similar to a central simple algebra of
degree n, and is therefore split by H.

7.2. CorOLLARY. With the conditions of the previous theorem, and assuming
moreover that the characteristic of k does not divide n, the group H must contain
subgroups isomorphic to Lagrangians of every symplectic module of order dividing

2
n-.

PrROOF. As in Theorem 6.6, any symplectic module G’ of order dividing n°
yields a division algebra %; of rank [ : €;] = | G'|, which has the property that
every splitting group of &; contains (an isomorphic image of) a Lagrangian of
G'. Since %; is similar to a central simple algebra of degree n, it is split by H;
therefore, H contains (an isomorphic image of) a Lagrangian of G'.

7.3. This last result yields a restriction on the minimal order of the groups
which split UD(k, n):

THEOREM. Letn =pii:--pipoi---p wherer,Z2 fori=1,...,s and {p} are
different primes. If H is a splitting group of UD(k, n), where k is an infinite field
whose characteristic does not divide n, then

lH’én.prz'-'p;S_z

Remark. This includes the fact that if . = 3 for some i, then UD(k, n) is not
a crossed product (see e.g. [6, p. 110]).

Proor. Let p’ be the highest power of a prime p = p; dividing n. Consider
the two examples of symplectic modules of order p* of 1.6 and 1.7: namely, the
elementary abelian group A,, and B.,, the direct product of two cyclic groups of
order p'. Since p” divides n°, it follows from Corollary 7.2 that H contains a
subgroup H; isomorphic to a Lagrangian of A, and a subgroup H, isomorphic
to a Lagrangian of B,. Since all the Sylow p-subgroups of H are conjugate, we
may assume that H, and H; are both contained in some Sylow p-subgroup H(p).

Proposition 1.6 shows that H, is elementary abelian (of rank r) and Proposi-
tion 1.7 shows that H, is a direct sum C,s @ G, of two cyclic groups with
s + t =r Therefore, H; N H: is elementary abelian of rank at most 2, whence
|H,N H,|=p°.
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Now, let H\H, = {h;h, | h; € H; for i =1,2}C H(p). By counting the classes
{H;h | h € H3}, we get |HiH,|=|H,| |Ho| |H: "\ H,|™", whence

|H(p)|z |Hi| | H| [H\N H[" = p™.p™".

Consequently, |H(p)|Z p>* ™. If r =1, then H, and H, are cyclic of order p,
whence |H(p)| Z p. This completes the proof that

|H|Z pD. . pXup . oop,
since |H| =11, |H(p)|.

7.4. The preceding proof shows that in order to get a better bound for |H |,
we need a bound for the order of the groups satisfying the condition of Corollary
7.2. This seems to be a rather difficult problem, which will be dealt with
elsewhere. Here we quote one result from [20]:

THEOREM. Let (e, ..., en) be the invariant exponents of an abelian p-group P,
with e, = - Z e, =0. If P contains (an isomorphic image of) a Lagrangian of
every symplectic module of order p”, then

(74.1) e tean= [;r] forv=1,...,r

(Here, [r/v] denotes the greatest integer g such that g = (r/v).)

7.5. Now, suppose H is an abelian splitting group of UD(k, n), let p be a
prime dividing n and let H(p) be the Sylow p-subgroup of H. Let also p" be the
highest power of p dividing n. From Corollary 7.2, and from the fact that every
p-subgroup of H is contained in H(p), it follows that H(p) contains an
isomorphic image of a Lagrangian of every symplectic module of order p*,
whence the invariant exponents a,, ..., a, of H(p) satisfy relation (7.4.1).

From this relation, it follows in particular that e, + e, = r and e, Z3[r/v] for
v=1,...,r, since e, = e,.,. Since e, is an integer, we even have:

e,é{%[-ﬂ} forv=1,...,r

where {p} denotes, for any real number p, the smallest integer q such that g = p.
Therefore,

Eeu=e1+e2+2epzr+2{%[1]}.
v vZ3 v=3 14

Since |H(p)| = p*> and |H| =11, |H(p)|, we have proved:
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THEOREM. Let n =py---pi where {p:} are different primes, and let k be an
infinite field whose characteristic does not divide n. If H is an abelian splitting
group of UD(k, n), then |H| is divisible by pi'- - - pi, where

r=ne S L)

REMARK. As a function of r;,

R.‘ = (r,- log r,)/2+ O(r,‘).

8. A survey of previously known results

Some results on adequacy of groups are implicit in the recent literature. In this
section, we collect those we are aware of and translate them in the notations of
this paper.

The adequacy to cyclic groups has been particularly investigated:

THEOREM. Let k be a field of characteristic p = 0 and let C, be a cyclic group of
order n.

(a) (Risman [13, Theorem 1)) If |H| = n and if n and p are relatively prime,
then C, 2 «H if and only if H= C, X C, where s divides r and k contains a
primitive s-th root of unity.

(b) (Saltman [15)) If n = p’, then C, = H if and only if n divides |H|.

In particular, part (a) shows that if k has no n-th root of unity except 1, then
C. =>H if and only if H = C,. The same arguments as in [13] can be used to
prove more generally:

PROPOSITION.  Let k be a field of characteristic p =0, let n be an integer not
divisible by p and let G, H be two groups of order n. If G is abelian and if 1 is the
only n-th root of unity in k, then G > H if and only if H=G.

The case where n is a power of p was studied by Saltman, who proved [16,
Theorem 3.2]:

THEOREM. Let k be a field of characteristic p# 0 and let G, H be two p-groups
of the same order. If G is abelian and not cyclic, then G > . Hif only if G = H.

It was communicated to us by Saltman that the same holds if G, H are
p-groups of the same order for some prime p and char(k)=0.

In the case where G is not abelian, much less is known. There is however one
result for the case G = D,,, the dihedral group of order 2n:
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THEOREM (Rowen and Saltman [14]). If n is odd and if k contains a primitive
n-th root of unity, then D,, = Cs,.

There is also an old result for the case G = C,, « C,, a semi-direct product of
cyclic groups:

THEOREM (Albert [1]). If char(k)=p and if p does not divide m, then
C. « C, > Cym. In particular, if p is odd, D,, = . C.,.

Appendix. Symmetric cocycles and the inflation map

Let G be a finite abelian group and ¢ :Z" — G be a surjective homomor-
phism. Let also A be a G-module. Letting Z" act on A through &, we have an
inflation map:

inf: H(G,A)— H*(Z", A).

The aim of this appendix is to provide a proof of the following result:
THEOREM. The kernel of inf: H(G,A)— H*(Z",A) is H (G, A)ym.
We need two lemmas:

Lemma 1. Every symmetric cocycle is cohomologous (in H*(G,A)) to a

symmetric cocycle with values in A °, the subgroup of A elementwise fixed under
G.

Proor. Choose a basis b= (a,...,0;) of G, so that G ={a)D -+ Do),
let Ci(G,A) be the group of couples of families ((u;)i=ij=r» (bi)i=i=r) With
u;, b, € A for all i, j and u; =0; w; + u; =0 for all i, J.

Let Z¥(G, A) be the subgroup of families for which the following relations
hold:

(A1) (o: = D + (07 — Dtwa + (0 — Dy =0,
(A2) (o: = 1)b; = Ny,

where N; is the sum of all the elements in the subgroup G; C G generated by ;.
Let also Bi(G, A) be the subgroup of families for which there exists a family
(¢:)isi=r In A such that:

u; = (on — 1)¢; — (07 — 1)ci,

b; = N,
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and let H{(G, A)= Z¥G/A)/B¥G, A). Then there is a canonical isomorphism:
v:HYG,A)—> Hi(G, A)
which maps a cocycle f € Z°(G, A) onto the couple {uy, b;) defined by:
u; = f(oi, 07) — f(oy, 01),

b": 2 f((T,O',-).

c€G;

(See for instance [18, §1].)
If f is symmetric, then u; =0 for all i, j, whence b; € A °, by condition (A.2).
Define then a cocycle g € Z*(G, A) by:

glor.o™=0 for0=k m=n-1 and k+m=n-1,
glof, o) =b for0=k, m=n-1 and k+m=n,,

where n; denotes the order of o;, and

g (H ok [] 0}”") =2 g(ot,a7).

' !

It is easy to check that g is a symmetric cocycle with values in A and that
v(f) = v(g). so that f and g are cohomologous.

LemMMmA 2. H(G, A)ym lies in the kernel of inf: H(G,A)— HZ", A).

PrROOF. Since Z" acts trivially on A€, the group H*(Z", A ), classifies the
abelian group extensions of A by Z"; therefore,

HY(Z", A )ym=Expz(Z",A°) =0,

since Z" is Z-projective. Consider then the following commutative diagram:

HYG, A%)ym —> HYZ", A)ym

| .

H*(G, A)yn—> H(Z", A)

where i, is induced by the inclusion mapi: A° — A.
By Lemma 1, the left vertical map is surjective. From the fact that the right
upper corner is zero, it then follows that inf(H*(G, A )ym) = 0.

PrROOF OF THE THEOREM. By Lemma 2, it suffices to prove: Ker(inf)C
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H?(G, A)ym. Let T be the kernel of & : Z" — G. The terms of low degree in the
Lyndon-Hochschild-Serre spectral sequence associated to the extension

0->TI'->Z"->G—0

yield an exact sequence:
H'(I',A)° -5 HY(G,A)—> H*Z", A)

where tg is the transgression map (see for instance [8, p. 354]). From the
definition of the transgression map (see [8, ch. 11, §9]), it follows easily that the
image of tg lies in H*(G, A )ym. Therefore, ker(inf) C H*(G, A )yym, and the proof
is complete.
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